搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带有垂直石墨烯的金属热电堆红外探测器

李凯 孙捷 杜在发 钱峰松 唐鹏昊 梅宇 徐晨 严群 柳鸣 李龙飞 郭伟玲

引用本文:
Citation:

带有垂直石墨烯的金属热电堆红外探测器

李凯, 孙捷, 杜在发, 钱峰松, 唐鹏昊, 梅宇, 徐晨, 严群, 柳鸣, 李龙飞, 郭伟玲

Metal thermopile infrared detector with vertical graphene

Li Kai, Sun Jie, Du Zai-Fa, Qian Feng-Song, Tang Peng-Hao, Mei Yu, Xu Chen, Yan Qun, Liu Ming, Li Long-Fei, Guo Wei-Ling
PDF
HTML
导出引用
  • 热电堆红外探测器主要是由热电偶为基本单元所构成的一种探测器件, 因其原理简单、工作时不需要冷却设备等优势已被广泛应用在生产生活的各个方面. 然而, 传统热电堆器件所选用材料的吸收率通常处在较低水平, 并且大部分与微加工工艺不兼容. 在此, 本文设计提出了一种带有垂直石墨烯(vertical graphene, VG)的金属热电堆红外探测器. 通过等离子体增强化学气相沉积(plasma enhanced chemical vapor deposition, PECVD)生长VG并将其保留在器件的热结处, 从而实现热电堆红外探测器的宽带和高响应特性. 这种复合结构的探测器在波长792 nm的情况下, 室温响应率最高可达1.53 V/W, 与没有VG的热电堆红外探测器相比, 前后响应结果可增加28倍左右, 响应时间缩短至0.8 ms左右. 该制备过程与微加工工艺相兼容, 同时整体提升了器件性能, 并适合于大规模生产. 此外, 利用表面等离激元共振的原理将VG与金属纳米颗粒相互结合, 发现在前后同等条件下材料的光吸收有明显的增强, 所产生的热电势响应最高可增6倍. 以上结果表明, VG在多种应用中具有巨大的潜力, 包括光电检测、微发电装置等, 该技术为制备高性能热电堆红外探测器和其他传感器件提供了一种新的途径.
    Thermopile infrared detector is a kind of detector device mainly composed of thermocouple as the basic unit. Because of its simple principle, no need of cooling equipment, and other advantages, it has been widely used in various fields of production and life. However, the absorption rates of the materials in conventional thermopile devices are poor, and the majority of them are incompatible with microfabrication methods. In this work, a metal thermopile infrared detector with vertical graphene (VG) is designed and fabricated. The VG is grown via plasma enhanced chemical vapor deposition, and retained at the device’s thermal ends to provide the thermopile IR detector’s wideband and high response characteristics. The detector achieves a room temperature responsivity reaching a value as high as 1.53 V/W at 792 nm, which can increase the response results about 28 times and reduce the response time to 0.8 ms compared with the thermopile detector without VG. After systematically measuring the response results, it is finally found that there are three main mechanisms responsible for the response on the composite device. The first one is the response generated by the metal thermopile itself alone. The second one is the response increased eventually by the contribution of VG covered at the metal thermal junction that expands the temperature difference. The last one is the response generated by the temperature gradient existing inside the VG on the surface of the device after the absorption of heat. The portion of each partial response mechanism in the total response is also analyzed, providing a new reference direction for analyzing the response generation mechanism of thermopile detectors with other absorbing materials. The process is compatible with the microfabrication, while the device performance is enhanced and suitable for mass production. Furthermore, by utilizing the surface plasmon resonance to combine VG with metal nanoparticles, the material’s light absorption is found to be enhanced significantly under the same conditions, and the resulting thermal voltage can be increased to 6 times. The results indicate that VG promises to possess practical applications, in many fields such as photoelectric sensing and power production devices. This technology provides a new method to manufacture high-performance thermopile infrared detectors and other sensor devices.
      通信作者: 孙捷, jie.sun@fzu.edu.cn ; 郭伟玲, guoweiling@bjut.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFA0209000)、福建省科技厅项目(批准号: 2021HZ0114, 2021J01583, 2021L3004)和中国福建光电信息科学与技术创新实验室项目(批准号: 2021ZZ122)资助的课题.
      Corresponding author: Sun Jie, jie.sun@fzu.edu.cn ; Guo Wei-Ling, guoweiling@bjut.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFA0209000), the Fujian Provincial Science and Technology Department Project, China (Grant Nos. 2021HZ0114, 2021J01583, 2021L3004), and the Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China (Grant No. 2021ZZ122).
    [1]

    Xia F, Mueller T, Lin Y, Valdes-Garcia A, Avouris P 2009 Nat. Nanotechnol. 4 839Google Scholar

    [2]

    Mittendorff M, Winnerl S, Kamann J, Eroms J, Weiss D, Schneider H, Helm M 2013 Appl. Phys. Lett. 103 021113Google Scholar

    [3]

    Compton O C, Nguyen S B T 2010 Small 6 711Google Scholar

    [4]

    Katsnelson M I 2007 Mater. Today 10 20

    [5]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308Google Scholar

    [6]

    Liu C, Chang Y, Norris T B, Zhong Z 2014 Nat. Nanotechnol. 9 273Google Scholar

    [7]

    Shi S F, Xu X, Ralph D C, McEuen P L 2011 Nano Lett. 11 1814Google Scholar

    [8]

    Emani N K, Chung T F, Ni X, Kildishev A V, Chen Y P, Boltasseva A 2012 Nano Lett. 12 5202Google Scholar

    [9]

    Lee H, Heo K, Park J, Park Y, Noh S, Kim K S, Lee C, Hong B H, Jian J, Hong S 2012 J. Mater. Chem. 22 8372Google Scholar

    [10]

    Babichev A V, Zhang H, Lavenus P, Julien F H, Egorov A Y, Lin Y T, Tu L W, Tchernycheva M 2013 Appl. Phys. Lett. 103 201103Google Scholar

    [11]

    Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, De Arquer P G F, Gatti F, Koppens F H 2012 Nat. Nanotechnol. 7 363Google Scholar

    [12]

    Bo Z, Yang Y, Chen J, Yu K, Yan J, Cen K 2013 Nanoscale 5 5180Google Scholar

    [13]

    Bo Z, Mao S, Han Z J, Cen K, Chen J, Ostrikov K K 2015 Chem. Soc. Rev. 44 2108Google Scholar

    [14]

    Zhu W, Xue Z Y, Wang G, Zhao M H, Chen D, Guo Q L, Liu Z D, Feng X Q, Ding G Q, Chu P K, Di Z F 2020 ACS Appl. Nano Mater. 3 6915Google Scholar

    [15]

    Yu K, Wang P, Lu G, Chen K H, Bo Z, Chen J 2011 J. Phys. Chem. Lett. 2 537Google Scholar

    [16]

    Graf A, Arndt M, Sauer M, Gerlach G 2007 Meas. Sci. Technol. 18 R59Google Scholar

    [17]

    Chaglla E J S, Celik N, Balachandran W 2018 Sensors 18 3315Google Scholar

    [18]

    Moisello E, Malcovati P, Bonizzoni E 2021 Micromachines 12 148Google Scholar

    [19]

    Buchner R, Sosna C, Maiwald M, Benecke W, Lang W 2006 Sens. Actuators, A 130 262

    [20]

    Dijkstra M, Lammerink T S, de Boer M J, Berenschot E J W, Wiegerink R J, Elwenspoek M 2014 J. Microelectromech. Syst. 23 908Google Scholar

    [21]

    Randjelovic D, Petropoulos A, Kaltsas G, Stojanovic M, Lazic Z, Djuric Z, Matic M 2008 Sens. Actuators, A 141 404Google Scholar

    [22]

    Yoo K P, Hong H P, Lee M J, Min S J, Park C W, Choi W S, Min N K 2011 Meas. Sci. Technol. 22 115206Google Scholar

    [23]

    Itoigawa K, Ueno H, Shiozaki M, Toriyama T, Sugiyama S 2005 J. Micromech. Microeng. 15 S233Google Scholar

    [24]

    Dhawan R, Madusanka P, Hu G Y, Debord J, Tran T, Maggio K, Edwards H, Lee M 2020 Nat. Commun. 11 4362Google Scholar

    [25]

    Xu D H, Wang Y L, Xiong B, Li T 2017 Front. Mech. Eng. 12 557Google Scholar

    [26]

    Shahmarvandi E K, Ghaderi M, Wolffenbuttel R F 2016 J. Phys. Conf. Ser. 757 012033Google Scholar

    [27]

    Xu D, Xiong B, Wang Y 2010 IEEE Electron Device Lett. 31 512Google Scholar

    [28]

    Zhang C C, Mao H Y, Shi M, Xiong J J, Long K W, Chen D P 2020 33rd IEEE International Confence on Micro Electro Mechannical Systems (MEMS 2020) Vancouver, Canada, January 18–22, 2020 p949

    [29]

    Qian F, Deng J, Xiong F, Dong Y, Xu C 2020 Opt. Mater. Express 10 2909Google Scholar

    [30]

    Li X, Zhu M, Du M, Lv Z, Zhang L, Li Y, Yang Y, Yang T, Li X, Wang K, Zhu Y, Fang Y 2016 Small 12 549Google Scholar

    [31]

    Tian W, Wang Y, Zhou H, Wang Y L, Li T 2020 J. Microelectromech Syst. 29 36Google Scholar

    [32]

    Sofiane B M, Sébastien E, Thomas B, Laurent T, Pascal V, Danick B, Jean-Paul G, Laurent C 2015 Microsyst. Technol. 21 1627Google Scholar

    [33]

    Allen L H, Patrick K H, Nathaniel M G, Sungjae H, Yong C S, Yi S, Matthew C, Madan D, Anantha P C, Jing K, Pablo J, Tomás P 2015 Nano Lett. 15 7211Google Scholar

    [34]

    Willets K A, Van Duyne, R P 2007 Ann. Rev. Phys. Chem. 58 267Google Scholar

  • 图 1  PECVD系统反应腔室结构示意图

    Fig. 1.  Schematic diagram of the structure of the reaction chamber of the PECVD system.

    图 2  (a)—(e) VG热电堆探测器制备流程; (f) VG热电堆探测器及器件测试示意图

    Fig. 2.  (a)–(e) Preparation process of VG thermopile detector; (f) schematic diagram of the VG thermopile detector and device measuring.

    图 3  带有VG金属热电堆红外探测器实物图

    Fig. 3.  Physical image of infrared detector with VG metal thermopile.

    图 4  VG的(a) SEM图和(b)拉曼光谱图; 不同生长时间的VG对应的(c)光透射率和(d)反射率

    Fig. 4.  (a) SEM image and (b) Raman spectrum of VG; (c), (d) corresponding optical transmittance (c) and reflectance (d) of VG with different growth time.

    图 5  器件在(a), (b) 792和(c), (d) 1550 nm下的响应结果 (a), (c) 仅有金属的热电堆器件; (b), (d) 带有VG的金属热电堆器件

    Fig. 5.  Response results of the device at (a), (b) 792 and (c), (d) 1550 nm: (a), (c) Metal-only thermopile device; (b), (d) metal thermopile device combined with VG.

    图 6  VG热电堆探测器在792 nm下的测试结果 (a) 响应测试示意图; (b) 仅有金属的器件光照在左端; (c) 仅有金属的器件光照在右端; (d) 带有VG的器件光照在左端; (e) 带有VG的器件光照在中点; (f) 带有VG的器件光照在右端

    Fig. 6.  Measure results of VG thermopile detector at 792 nm: (a) Measure schematic diagram; (b) metal-only device (laser on the left end); (c) metal-only device (laser on the right end); (d) with VG device (laser on the left end); (e) with VG device (laser on the midpoint); (f) with VG device (laser on the right end).

    图 10  VG与金属纳米颗粒结合前后的响应结果 (a) VG与AgNPs; (b) VG与AuNPs

    Fig. 10.  Response results before and after the combination of VG and metal nanoparticles: (a) VG with AgNPs; (b) VG with AuNPs

    图 7  VG热电堆探测器在1550 nm下的测试结果 (a) 带有VG的器件光照在左端; (b) 带有VG的器件光照在中点; (c) 带有VG的器件光照在右端

    Fig. 7.  Measure results of VG thermopile detector at 1550 nm: (a) With VG device (laser on the left end); (b) with VG device (laser on the midpoint); (c) with VG device (laser on the right end).

    图 8  厚度为8 nm Au薄膜和Ag薄膜退火后的SEM图和粒径统计直方图 (a) Au退火700 ℃; (b) Au退火 900 ℃; (c) Ag退火 300 ℃; (d) Ag退火 700 ℃; (e)—(h) 相对应的粒径统计直方图结果

    Fig. 8.  SEM images and particle size statistical histograms of 8 nm thick Au films and Ag films after annealing: (a) Au annealed at 700 ℃; (b) Au annealed at 900 ℃; (c) Ag annealed at 300 ℃; (d) Ag annealed at 700 ℃; (e)–(h) corresponding particle size statistical histogram results.

    图 9  VG与金属纳米颗粒结合前后的(a), (b)拉曼测试和(c), (d)光吸收率结果 (a), (c) VG与AgNPs; (b), (d) VG与AuNPs

    Fig. 9.  (a), (b) Raman and (c), (d) optical absorption results before and after the combination of VG and metal nanoparticles: (a), (c) VG with AgNPs; (b), (d) VG with AuNPs.

    表 1  不同种热电堆红外探测器的参数比较

    Table 1.  Parameter comparison of different thermopile infrared detectors.

    吸收层热电堆材料响应度
    R/(V·W–1)
    响应时间
    τ/ms
    Au[31]P/n-polySi16.514
    Ti[32]n-polySi/Ti210
    SiN-SiO2[33]p/n-graphene923
    VGCu/Cu-Ni1.530.8
    下载: 导出CSV
  • [1]

    Xia F, Mueller T, Lin Y, Valdes-Garcia A, Avouris P 2009 Nat. Nanotechnol. 4 839Google Scholar

    [2]

    Mittendorff M, Winnerl S, Kamann J, Eroms J, Weiss D, Schneider H, Helm M 2013 Appl. Phys. Lett. 103 021113Google Scholar

    [3]

    Compton O C, Nguyen S B T 2010 Small 6 711Google Scholar

    [4]

    Katsnelson M I 2007 Mater. Today 10 20

    [5]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308Google Scholar

    [6]

    Liu C, Chang Y, Norris T B, Zhong Z 2014 Nat. Nanotechnol. 9 273Google Scholar

    [7]

    Shi S F, Xu X, Ralph D C, McEuen P L 2011 Nano Lett. 11 1814Google Scholar

    [8]

    Emani N K, Chung T F, Ni X, Kildishev A V, Chen Y P, Boltasseva A 2012 Nano Lett. 12 5202Google Scholar

    [9]

    Lee H, Heo K, Park J, Park Y, Noh S, Kim K S, Lee C, Hong B H, Jian J, Hong S 2012 J. Mater. Chem. 22 8372Google Scholar

    [10]

    Babichev A V, Zhang H, Lavenus P, Julien F H, Egorov A Y, Lin Y T, Tu L W, Tchernycheva M 2013 Appl. Phys. Lett. 103 201103Google Scholar

    [11]

    Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, De Arquer P G F, Gatti F, Koppens F H 2012 Nat. Nanotechnol. 7 363Google Scholar

    [12]

    Bo Z, Yang Y, Chen J, Yu K, Yan J, Cen K 2013 Nanoscale 5 5180Google Scholar

    [13]

    Bo Z, Mao S, Han Z J, Cen K, Chen J, Ostrikov K K 2015 Chem. Soc. Rev. 44 2108Google Scholar

    [14]

    Zhu W, Xue Z Y, Wang G, Zhao M H, Chen D, Guo Q L, Liu Z D, Feng X Q, Ding G Q, Chu P K, Di Z F 2020 ACS Appl. Nano Mater. 3 6915Google Scholar

    [15]

    Yu K, Wang P, Lu G, Chen K H, Bo Z, Chen J 2011 J. Phys. Chem. Lett. 2 537Google Scholar

    [16]

    Graf A, Arndt M, Sauer M, Gerlach G 2007 Meas. Sci. Technol. 18 R59Google Scholar

    [17]

    Chaglla E J S, Celik N, Balachandran W 2018 Sensors 18 3315Google Scholar

    [18]

    Moisello E, Malcovati P, Bonizzoni E 2021 Micromachines 12 148Google Scholar

    [19]

    Buchner R, Sosna C, Maiwald M, Benecke W, Lang W 2006 Sens. Actuators, A 130 262

    [20]

    Dijkstra M, Lammerink T S, de Boer M J, Berenschot E J W, Wiegerink R J, Elwenspoek M 2014 J. Microelectromech. Syst. 23 908Google Scholar

    [21]

    Randjelovic D, Petropoulos A, Kaltsas G, Stojanovic M, Lazic Z, Djuric Z, Matic M 2008 Sens. Actuators, A 141 404Google Scholar

    [22]

    Yoo K P, Hong H P, Lee M J, Min S J, Park C W, Choi W S, Min N K 2011 Meas. Sci. Technol. 22 115206Google Scholar

    [23]

    Itoigawa K, Ueno H, Shiozaki M, Toriyama T, Sugiyama S 2005 J. Micromech. Microeng. 15 S233Google Scholar

    [24]

    Dhawan R, Madusanka P, Hu G Y, Debord J, Tran T, Maggio K, Edwards H, Lee M 2020 Nat. Commun. 11 4362Google Scholar

    [25]

    Xu D H, Wang Y L, Xiong B, Li T 2017 Front. Mech. Eng. 12 557Google Scholar

    [26]

    Shahmarvandi E K, Ghaderi M, Wolffenbuttel R F 2016 J. Phys. Conf. Ser. 757 012033Google Scholar

    [27]

    Xu D, Xiong B, Wang Y 2010 IEEE Electron Device Lett. 31 512Google Scholar

    [28]

    Zhang C C, Mao H Y, Shi M, Xiong J J, Long K W, Chen D P 2020 33rd IEEE International Confence on Micro Electro Mechannical Systems (MEMS 2020) Vancouver, Canada, January 18–22, 2020 p949

    [29]

    Qian F, Deng J, Xiong F, Dong Y, Xu C 2020 Opt. Mater. Express 10 2909Google Scholar

    [30]

    Li X, Zhu M, Du M, Lv Z, Zhang L, Li Y, Yang Y, Yang T, Li X, Wang K, Zhu Y, Fang Y 2016 Small 12 549Google Scholar

    [31]

    Tian W, Wang Y, Zhou H, Wang Y L, Li T 2020 J. Microelectromech Syst. 29 36Google Scholar

    [32]

    Sofiane B M, Sébastien E, Thomas B, Laurent T, Pascal V, Danick B, Jean-Paul G, Laurent C 2015 Microsyst. Technol. 21 1627Google Scholar

    [33]

    Allen L H, Patrick K H, Nathaniel M G, Sungjae H, Yong C S, Yi S, Matthew C, Madan D, Anantha P C, Jing K, Pablo J, Tomás P 2015 Nano Lett. 15 7211Google Scholar

    [34]

    Willets K A, Van Duyne, R P 2007 Ann. Rev. Phys. Chem. 58 267Google Scholar

  • [1] 叶高杰, 殷澄, 黎思瑜, 俞强, 王贤平, 吴坚. 金属纳米颗粒双圆环阵列的表面格点共振效应. 物理学报, 2023, 72(10): 104201. doi: 10.7498/aps.72.20230199
    [2] 井建迎, 刘琨, 吴张羿, 刘玥萌, 江俊峰, 徐天华, 晏伟铖, 熊艺扬, 战晓寒, 肖璐, 刘津畅, 刘铁根. 基于紫磷增敏的即插即用式双通道光纤表面等离激元共振折射率计. 物理学报, 2023, 72(21): 214206. doi: 10.7498/aps.72.20231110
    [3] 葛浩楠, 谢润章, 郭家祥, 李庆, 余羿叶, 何家乐, 王芳, 王鹏, 胡伟达. 人工微纳结构增强长波及甚长波红外探测器. 物理学报, 2022, 71(11): 110703. doi: 10.7498/aps.71.20220380
    [4] 李健康, 李睿. 利用数值模拟研究表面增强相干反斯托克斯拉曼散射增强基底. 物理学报, 2021, 70(10): 104207. doi: 10.7498/aps.70.20201773
    [5] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [6] 马嵩松, 舒天宇, 朱家旗, 李锴, 吴惠桢. Ⅳ-Ⅵ族化合物半导体异质结二维电子气研究进展. 物理学报, 2019, 68(16): 166801. doi: 10.7498/aps.68.20191074
    [7] 朱旭鹏, 石惠民, 张轼, 陈智全, 郑梦洁, 王雅思, 薛书文, 张军, 段辉高. 表面等离激元耦合体系及其光谱增强应用. 物理学报, 2019, 68(14): 147304. doi: 10.7498/aps.68.20190782
    [8] 冯仕靓, 王靖宇, 陈舒, 孟令雁, 沈少鑫, 杨志林. 表面等离激元“热点”的可控激发及近场增强光谱学. 物理学报, 2019, 68(14): 147801. doi: 10.7498/aps.68.20190305
    [9] 万婷, 罗朝明, 闵力, 陈敏, 肖磊. 基于合金介电常数的可控特性增强光子自旋霍尔效应. 物理学报, 2018, 67(6): 064201. doi: 10.7498/aps.67.20171824
    [10] 蒋行, 周玉荣, 刘丰珍, 周玉琴. 后退火处理对铟锡氧化物表面等离激元共振特性的影响. 物理学报, 2018, 67(17): 177802. doi: 10.7498/aps.67.20180435
    [11] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器. 物理学报, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [12] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [13] 黄运欢, 李璞. 金纳米棒复合体的消光特性. 物理学报, 2015, 64(20): 207301. doi: 10.7498/aps.64.207301
    [14] 王玥, 刘丽炜, 胡思怡, 李其扬, 孙振皓, 苗馨卉, 杨小川, 张喜和. 基于COMSOL Multiphysics对Cu2S量子点的表面等离激元共振模拟研究. 物理学报, 2013, 62(19): 197803. doi: 10.7498/aps.62.197803
    [15] 杨振岭, 刘玉强, 杨延强. 银纳米颗粒对四苯基卟啉Q带荧光寿命的延长. 物理学报, 2012, 61(3): 037805. doi: 10.7498/aps.61.037805
    [16] 陈文豪, 杜磊, 殷雪松, 康莉, 王芳, 陈松. PbS红外探测器低频噪声物理模型及缺陷表征研究. 物理学报, 2011, 60(10): 107202. doi: 10.7498/aps.60.107202
    [17] 黄建亮, 卫炀, 马文全, 杨涛, 陈良惠. InAs/InxGa1-xSb二类超晶格红外探测器的吸收波长与电子-空穴波函数交叠的研究. 物理学报, 2010, 59(5): 3099-3106. doi: 10.7498/aps.59.3099
    [18] 王 科, 郑婉华, 任 刚, 杜晓宇, 邢名欣, 陈良惠. 双色量子阱红外探测器顶部光子晶体耦合层的设计优化. 物理学报, 2008, 57(3): 1730-1736. doi: 10.7498/aps.57.1730
    [19] 李良新, 胡勇华. 可用于红外探测器的自组织量子线及其带间和子带间光学跃迁. 物理学报, 2005, 54(2): 848-856. doi: 10.7498/aps.54.848
    [20] 陈长虹, 易新建, 熊笔锋. 基于VO2薄膜非致冷红外探测器光电响应研究. 物理学报, 2001, 50(3): 450-452. doi: 10.7498/aps.50.450
计量
  • 文章访问数:  3182
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-01
  • 修回日期:  2022-10-27
  • 上网日期:  2022-11-19
  • 刊出日期:  2023-02-05

/

返回文章
返回