-
本文研究n体聚集过程和联合聚集过程的集团分布演化。从广义Smoluchovki方程出发,给出聚集核K(i1,i2,…,in)=A sumfrom i=1 to n i1+B(A,B均为常数)的显解;利用聚集核K(i1,i2,…,in)=(Ai1+B)(Ai2+B)…(Ain+B)和核K(i1,i2,…,in)=A sumfrom i=1 to n i1+B的方程之间的联系,得出核K(i1,i2,…,in)=S(i1)S(i2)…S(in)(SK=AK+B)的凝前解。而且,根据联合聚集动力学方程,讨论了聚集和型核分别为K2(i,j)=i+j,K3(i,j,k)=i+j+k的集团尺寸分布Cm(t)的长时行为,并将结论推广到一般的联合聚集过程。We have considered coagulation processes containing n-polymer interactions by means of a generalized Smoluchovski's equation, which is solved as a monodisperseinitial-value problem to the kernel: K(i1,i2,…,in)=A sumfrom i=1 to n i1+B, K(i1,i2,…,in)=A sumfrom i=1 to n i1. According to the connection between model K(i1,i2,…,in)=A sumfrom i=1 to n i1+B and K(i1,i2,…,in)= S(i1)S(i2)…S(in)(S=Ak+B),we obtain the pre-gel solution of the latter model. We also study a kind of joint coagulation process containing two-polymer and three-polymer collisions with the kernel K2(i, j)=i+j and K3(i,j,k) = i+j+k and get the explicit expression of Cm(t). Finally, we discuss the long-term behavior of Cm(t), Which can be extented to the general case.
计量
- 文章访问数: 6206
- PDF下载量: 522
- 被引次数: 0