Control of chaos in an external cavity delay feedback semiconductor laser via modulating the feedback polarizing light is studied. The laser dynamic physical models of the delayed feedback of dual beams with orthogonal polarizating, with parallel polarizations, or with synchronous or arbitrary polarizing directions are presented, respectively. The delay time and feedback quantity of the feedback light can be adjusted by adjusting the mirror and the optical attenuator in the external optical path, or by adjusting the polarization plane of one beam of polarized light with respect to the polarization direction of the other beam, or at an arbitrary polarization direction to the other beam of polarizing light. In all these cases, the chaotic laser can be controlled. Numerical results show that the laser can be conducted to the single cycle or the multi-cycle, and at the same time be in the polarizing oscillation, polarizing anti-oscillation or stable states.