搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于低温硅技术的赝晶SiGe应变弛豫机理

杨洪东 于奇 王向展 李竞春 宁宁 杨谟华

引用本文:
Citation:

基于低温硅技术的赝晶SiGe应变弛豫机理

杨洪东, 于奇, 王向展, 李竞春, 宁宁, 杨谟华

Strain relaxation mechanism of pseudomorphic SiGe using low-temperature technology

Yang Hong-Dong, Yu Qi, Wang Xiang-Zhan, Li Jing-Chun, Ning Ning, Yang Mo-Hua
PDF
导出引用
  • 基于能量平衡条件,结合低温硅(LT-Si)剪切模量小于SiGe的实验结果,从螺位错形成模型出发,给出了基于LT-Si技术的赝晶SiGe应变弛豫机理.该机理指出,赝晶SiGe薄膜厚度小于位错形成临界厚度,可通过LT-Si缓冲层中形成位错释放应变;等于与大于临界厚度,位错在LT-Si层中优先形成,和文献报道中已观察到的实验结果相符合.同时,实验制备了基于LT-Si技术的弛豫Si0.8Ge0.2虚拟衬底材料.结果显示,位错被限制在LT-Si缓冲层中,弛豫度达到了85.09%,且在Si0.8Ge0.2中未观察到穿透位错,实验结果证实了赝晶Si0.8Ge0.2是通过在LT-Si缓冲层形成位错来释放应变的弛豫机理.
    In the light of energy balance and screw dislocation formation model,a detailed analysis is presented on strain relaxation mechanism of pseudomorphic SiGe based on the experimental result that shear modulus of low-temperature Si (LT-Si) is less than that of SiGe.The mechanism shows that strain is relaxed by dislocation formed in LT-Si buffer layer when the thickness of pseudomorphic SiGe film is smaller than the critical thickness, and dislocations prefecentially form in LT-Si layer then the thickness of the film is equal or exceeds the critical thickness,which agrees with the experimental results reported in the literature.At the same time,an experiment was carried out to grow relaxed Si0.8Ge0.2 virtual substrate using LT-Si technology.The results indicated that dislocations were resmicted to the LT-Si layer and the relaxation degree was 85.09% without threading dislocations in Si0.8Ge0.2.The experimental results proved that the strain of pseudomorphic Si0.8Ge0.2 is relaxed by dislocations formed in the LT-Si buffer layer.
    • 基金项目: 国家部委61398基金资助的课题.
    [1]

    Ogura A,Saitoh H,Kosemura D,Kakemura Y,Yoshida T,Takei M,Koganezawa T,Hirosawa I,Kohno M,Nishita T,Nakanishi T 2009 Electrochem.Solid-State Lett. 12 H117

    [2]

    Wu X,Baribeau J M 2009 J.Appl.Phys. 105 435171

    [3]

    Yeo Y 2007 Semicond.Sci.Technol. 22 177

    [4]

    Ortolland C,Morin P,Chaton C,Mastromatteo E,Populaire C,Orain S,Leverd F,Stolk P,Buf F,Arnaud F 2006 Symposium on VLSI Technology 78

    [5]

    Dai X Y,Hu H Y,Song J J,Xuan R X,Zhang H M 2008 Acta Phys.Sin. 57 5918(in Chinese)[戴显英、胡辉勇、宋建军、宣荣喜、张鹤鸣 2008 物理学报 57 5918]

    [6]

    Welser J,Hoyt J L,Gibbons J F 1992 IEDM 1000

    [7]

    Xie Y H,Fitzgerald E A,Silverman P J,Kortan A R,Weir B E 1992 Mater.Sci.and Eng. 14 332

    [8]

    Liu J L,Moore C D,U'Ren G D,Luo Y H,Lu Y,Jin G,Thomas S G,Goorsky M S,Wang K L 1999 Appl.Phys.Lett. 75 1586

    [9]

    Trinkaus H,Hollander B,Rongen S,Mantl S,Herzog H J,Kuchenbecker J,Hackbarth T 2000 Appl.Phys.Lett. 76 3552

    [10]

    Yang H,Fan Y 2006 Pan Tao Ti Hsueh Pao 27 144

    [11]

    Luo Y H,Wan J,Forrest R L,Liu J L,Goorsky M S,Wang K L 2001 J.Appl.Phys. 89 8279

    [12]

    Chen H,Guo L W,Cui Q,Hu Q,Huang Q,Zhou J M 1996 J.Appl.Phys. 79 1167

    [13]

    Van Der Merwe J H 1963 J.Appl.Phys. 34 123

    [14]

    Matthews J W,Blakeslee A E 1974 J.Cryst.Growth 27 118

    [15]

    People R,Bean J C 1985 Appl.Phys.Lett. 47 322

    [16]

    Peng C S,Li Y K,Huang Q,Zhou J M 2001 11th International Conference on Molecular Beam Epitaxy 740

    [17]

    Bolkhovityanov Y B,Gutakovskii A K,Mashanov V I,Pchelyakov O P,Revenko M A,Sokolov L V 2001 Thin Solid Films 392 98

    [18]

    Linder K K,Zhang F C,Rieh J S,Bhattacharya P 1997 J.Cryst.Growth 175 499

    [19]

    Lee S W,Chen H C,Chen L J,Peng Y H,Kuan C H,Cheng H H 2002 J.Appl.Phys. 92 6880

    [20]

    Luo Y H,Wan J,Forrest R L,Liu J L,Jin G,Goorsky M S,Wang K L 2001 Appl.Phys.Lett. 78 454

    [21]

    Li J H,Peng C S,Wu Y,Dai D Y,Zhou J M,Mai Z H 1997 Appl.Phys.Lett. 71 3132

    [22]

    Linder K K,Zhang F C,Rieh J S,Bhattacharya P,Houghton D 1997 Appl.Phys.Lett. 70 3224

    [23]

    Nix W D 1998 Scripta Mater. 39 545

    [24]

    Dundurs J,Gangadharan A C 1969 Journal of the Mechanics and Physics of Solids 17 459

    [25]

    Chou Y T 1966 Phys.Status Solidi 17 509

    [26]

    Hirth J P,Lothe J,Nabarro F R N,Smoluchowski R 1968 Physics Today 21 85

  • [1]

    Ogura A,Saitoh H,Kosemura D,Kakemura Y,Yoshida T,Takei M,Koganezawa T,Hirosawa I,Kohno M,Nishita T,Nakanishi T 2009 Electrochem.Solid-State Lett. 12 H117

    [2]

    Wu X,Baribeau J M 2009 J.Appl.Phys. 105 435171

    [3]

    Yeo Y 2007 Semicond.Sci.Technol. 22 177

    [4]

    Ortolland C,Morin P,Chaton C,Mastromatteo E,Populaire C,Orain S,Leverd F,Stolk P,Buf F,Arnaud F 2006 Symposium on VLSI Technology 78

    [5]

    Dai X Y,Hu H Y,Song J J,Xuan R X,Zhang H M 2008 Acta Phys.Sin. 57 5918(in Chinese)[戴显英、胡辉勇、宋建军、宣荣喜、张鹤鸣 2008 物理学报 57 5918]

    [6]

    Welser J,Hoyt J L,Gibbons J F 1992 IEDM 1000

    [7]

    Xie Y H,Fitzgerald E A,Silverman P J,Kortan A R,Weir B E 1992 Mater.Sci.and Eng. 14 332

    [8]

    Liu J L,Moore C D,U'Ren G D,Luo Y H,Lu Y,Jin G,Thomas S G,Goorsky M S,Wang K L 1999 Appl.Phys.Lett. 75 1586

    [9]

    Trinkaus H,Hollander B,Rongen S,Mantl S,Herzog H J,Kuchenbecker J,Hackbarth T 2000 Appl.Phys.Lett. 76 3552

    [10]

    Yang H,Fan Y 2006 Pan Tao Ti Hsueh Pao 27 144

    [11]

    Luo Y H,Wan J,Forrest R L,Liu J L,Goorsky M S,Wang K L 2001 J.Appl.Phys. 89 8279

    [12]

    Chen H,Guo L W,Cui Q,Hu Q,Huang Q,Zhou J M 1996 J.Appl.Phys. 79 1167

    [13]

    Van Der Merwe J H 1963 J.Appl.Phys. 34 123

    [14]

    Matthews J W,Blakeslee A E 1974 J.Cryst.Growth 27 118

    [15]

    People R,Bean J C 1985 Appl.Phys.Lett. 47 322

    [16]

    Peng C S,Li Y K,Huang Q,Zhou J M 2001 11th International Conference on Molecular Beam Epitaxy 740

    [17]

    Bolkhovityanov Y B,Gutakovskii A K,Mashanov V I,Pchelyakov O P,Revenko M A,Sokolov L V 2001 Thin Solid Films 392 98

    [18]

    Linder K K,Zhang F C,Rieh J S,Bhattacharya P 1997 J.Cryst.Growth 175 499

    [19]

    Lee S W,Chen H C,Chen L J,Peng Y H,Kuan C H,Cheng H H 2002 J.Appl.Phys. 92 6880

    [20]

    Luo Y H,Wan J,Forrest R L,Liu J L,Jin G,Goorsky M S,Wang K L 2001 Appl.Phys.Lett. 78 454

    [21]

    Li J H,Peng C S,Wu Y,Dai D Y,Zhou J M,Mai Z H 1997 Appl.Phys.Lett. 71 3132

    [22]

    Linder K K,Zhang F C,Rieh J S,Bhattacharya P,Houghton D 1997 Appl.Phys.Lett. 70 3224

    [23]

    Nix W D 1998 Scripta Mater. 39 545

    [24]

    Dundurs J,Gangadharan A C 1969 Journal of the Mechanics and Physics of Solids 17 459

    [25]

    Chou Y T 1966 Phys.Status Solidi 17 509

    [26]

    Hirth J P,Lothe J,Nabarro F R N,Smoluchowski R 1968 Physics Today 21 85

  • [1] 陈晶晶. 纳米孪晶界对可动位错演化特性与金属Al强化机理探究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211305
    [2] 赵小强, 赵学童, 许超, 李巍巍, 任路路, 廖瑞金, 李建英. ZnO-Bi2O3系压敏陶瓷缺陷弛豫特性的研究进展. 物理学报, 2017, 66(2): 027701. doi: 10.7498/aps.66.027701
    [3] 刘伯飞, 白立沙, 张德坤, 魏长春, 孙建, 侯国付, 赵颖, 张晓丹. 非晶硅界面缓冲层对非晶硅锗电池性能的影响. 物理学报, 2013, 62(24): 248801. doi: 10.7498/aps.62.248801
    [4] 刘伯飞, 白立沙, 魏长春, 孙建, 侯国付, 赵颖, 张晓丹. 非晶硅锗电池性能的调控研究. 物理学报, 2013, 62(20): 208801. doi: 10.7498/aps.62.208801
    [5] 陈城钊, 郑元宇, 黄诗浩, 李成, 赖虹凯, 陈松岩. 硅基低位错密度厚锗外延层的UHV/CVD法生长. 物理学报, 2012, 61(7): 078104. doi: 10.7498/aps.61.078104
    [6] 郑宗文, 徐庭栋, 王凯, 邵冲. 晶界滞弹性弛豫理论的现代进展. 物理学报, 2012, 61(24): 246202. doi: 10.7498/aps.61.246202
    [7] 谷锦华, 周玉琴, 朱美芳, 李国华, 丁 琨, 周炳卿, 刘丰珍, 刘金龙, 张群芳. 低温制备微晶硅薄膜生长机制的研究. 物理学报, 2005, 54(4): 1890-1894. doi: 10.7498/aps.54.1890
    [8] 陈一匡, 林揆训, 罗 志, 梁锐生, 周甫方. 铝诱导非晶硅薄膜的场致低温快速晶化及其结构表征. 物理学报, 2004, 53(2): 582-586. doi: 10.7498/aps.53.582
    [9] 林揆训, 林璇英, 梁厚蕴, 池凌飞, 余楚迎, 黄创君. 非晶硅薄膜的低温快速晶化及其结构分析. 物理学报, 2002, 51(4): 863-866. doi: 10.7498/aps.51.863
    [10] 徐刚毅, 王天民, 何宇亮, 马智训, 郑国珍. 纳米硅薄膜的低温电输运机制. 物理学报, 2000, 49(9): 1798-1803. doi: 10.7498/aps.49.1798
    [11] 朱美芳. 氢化非晶硅的低温输运. 物理学报, 1996, 45(3): 499-505. doi: 10.7498/aps.45.499
    [12] 黄亨吉, 善甫康成. 在硅晶体中由螺位错引起的电子散射. 物理学报, 1984, 33(9): 1227-1239. doi: 10.7498/aps.33.1227
    [13] 杨传铮, 姜小龙, 许顺生. 硅蹼中位错和层错的X射线貌相研究. 物理学报, 1980, 29(3): 341-353. doi: 10.7498/aps.29.341
    [14] 许振嘉, 陈玉璋, 江德生, 宋春英, 李贺成, 宋祥芳, 叶亦英. 硅、锗中氧的低温红外吸收. 物理学报, 1980, 29(7): 867-877. doi: 10.7498/aps.29.867
    [15] 周洁, 王占国, 刘志刚, 王万年, 尤兴凯. 硅的低温电学性质. 物理学报, 1966, 22(4): 404-411. doi: 10.7498/aps.22.404
    [16] 刘振茂, 王贵华, 洪晶, 叶以正. 硅中位错增殖的实验观察. 物理学报, 1966, 22(9): 1077-1097. doi: 10.7498/aps.22.1077
    [17] 甘子钊. 硅中空穴与核的超精细作用及p型硅的核磁弛豫. 物理学报, 1965, 21(4): 691-706. doi: 10.7498/aps.21.691
    [18] 洪晶, 叶以正. 集中力作用下硅中位错结构. 物理学报, 1965, 21(8): 1475-1486. doi: 10.7498/aps.21.1475
    [19] 洪晶, 叶以正. 硅中位错运动速度. 物理学报, 1965, 21(12): 1968-1976. doi: 10.7498/aps.21.1968
    [20] 洪晶, 王贵华, 刘振茂, 叶以正. 硅中位错与蚀斑的对应关系. 物理学报, 1964, 20(12): 1254-1267. doi: 10.7498/aps.20.1254
计量
  • 文章访问数:  8841
  • PDF下载量:  825
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-11-13
  • 修回日期:  2009-12-11
  • 刊出日期:  2010-04-05

/

返回文章
返回