-
建立了大面积矩形表面波等离子体(SWP)源全尺寸的三维模型,用数值模拟的方法研究了SWP源基于碰撞的功率吸收问题,给出了随等离子体参数变化的微波反射率曲线,分析了不同天线对微波功率沉积的影响,并讨论了微波功率吸收和表面波的定性关系. 结果发现,均匀放电的SWP源功率沉积本质是由表面波等离子体的性质决定的,等离子体密度太大或太小都不利于功率吸收. 在正常工作气压下,SWP源通过碰撞机理即可以实现微波功率的有效沉积,微波吸收率可达80%以上,与已有实验相符. 本研究同时发现,天线阵列激发的表面波模式越紧凑,强度越大,越有利于微波的吸收.A full-size three-dimensional model of large-scale rectangular surface-wave plasma (SWP) source was built, the power deposition problems of SWP source based on collision mechanism were investigated through numerical simulations. The microwave reflectivity curves varying with plasma parameters were obtained, and the influence of different antenna arrays on power deposition is analyzed. The results show that the power deposition of uniformly discharged SWP source mainly depends on plasma property, and too big or too small plasma density is unfavorable to the energy absorption. In the range of working gas pressure, SWP source can achieve effective power deposition only through collision mechanism, and the absorption rate of microwave can reach more than 80%, which agrees with the existing experimental result. The results also show that compact and intensive surface wave is more favorable to the absorption of microwave.
-
Keywords:
- finite difference time domain method /
- plasma surface wave /
- power absorption /
- slot antenna
[1] Sugai H, Ghanashev I, Nagatsu M 1998 Plasma Sources Sci. Technol. 7 192
[2] Ghanashev I, Nagatsu M, Morita S, Sugai H 1998 J. Vac. Sci. Technol. A 16 1537
[3] Nagatsu M, Morita S, Ghanashev I, Ito A, Toyoda N, Sugai H J 2000 J. Phys. D: Appl. Phys. 33 1143
[4] Ghanashev I, Sugai H 2000 Phys. Plasmas 7 3051
[5] Ganashev I, Nagatsu M, Sugai H 1997 Jpn. J. Appl. Phys. 36 337
[6] Wu T J, Guan W J, Tsai C M 2001 Phys. Plasmas 8 3195
[7] Nagatsu M, Ghanashev I, Sugai H 1998 Plasma Sources Sci. Technol. 7 230
[8] Nagatsu M, Naito K, Ogino A, Nanko S 2006 Plasma Sources Sci. Technol. 15 37
[9] Yasaka Y, Koga K 2002 Phys. Plasmas 9 1029
[10] Liu M H, Sugai H, Hu X W, Ishijima T, Jiang Z H, Li B, Dan M 2006 Acta Phys. Sin. 55 5905 (in Chinese) [刘明海、 菅井秀郎、 胡希伟、 石岛芳夫、 江中和、 李 斌、 但 敏 2006 物理学报 55 5905]
[11] Ou Q R, Liang R Q 2002 Vacuum and Low Temperature 8 28(in Chinese)[欧琼荣、 梁荣庆 2002 真空与低温 8 28]
[12] Zhan R J, Wu C F, Wen X H, Zhu X D,Zhou H Y 2001 Vacuum Science and Technology 21 30(in Chinese)[詹如娟、 吴 丛凤、 温晓辉、 朱晓东、 周海洋 2001 真空科学与技术 21 30] 〖13] Liang Y Z, OU Q R, Liang B, Liang R Q 2008 Chin. Phys. Lett. 25 1761
[13] Chen Z Q, Zhou P Q, Chen W, Lan C H, Liu M H, Hu X W 2008 Plasma Science and Technology 10 655
[14] Lan C H, Chen Z Q, Liu M H, Hu X W 2009 Plasma Science and Technology 11 66
[15] Lan C H, Hu X W, Liu M H 2009 Chin. Phys. Lett. 26 035204
[16] Sugai H 2002 Plasma Electronic Engineering (Beijing: Science Press) (in Chinese)[菅井秀郎 2002 等离子体电子工程学 (北京:科学出版社)]
[17] Taflove A 1995 Computational Electrodynamics: the Finite-Difference Time-Domain Method (Boston: Artech House)
[18] Chen Q, Aoyagi H P, Katsurai M 1999 IEEE Trans. Plasma Science 27 164
-
[1] Sugai H, Ghanashev I, Nagatsu M 1998 Plasma Sources Sci. Technol. 7 192
[2] Ghanashev I, Nagatsu M, Morita S, Sugai H 1998 J. Vac. Sci. Technol. A 16 1537
[3] Nagatsu M, Morita S, Ghanashev I, Ito A, Toyoda N, Sugai H J 2000 J. Phys. D: Appl. Phys. 33 1143
[4] Ghanashev I, Sugai H 2000 Phys. Plasmas 7 3051
[5] Ganashev I, Nagatsu M, Sugai H 1997 Jpn. J. Appl. Phys. 36 337
[6] Wu T J, Guan W J, Tsai C M 2001 Phys. Plasmas 8 3195
[7] Nagatsu M, Ghanashev I, Sugai H 1998 Plasma Sources Sci. Technol. 7 230
[8] Nagatsu M, Naito K, Ogino A, Nanko S 2006 Plasma Sources Sci. Technol. 15 37
[9] Yasaka Y, Koga K 2002 Phys. Plasmas 9 1029
[10] Liu M H, Sugai H, Hu X W, Ishijima T, Jiang Z H, Li B, Dan M 2006 Acta Phys. Sin. 55 5905 (in Chinese) [刘明海、 菅井秀郎、 胡希伟、 石岛芳夫、 江中和、 李 斌、 但 敏 2006 物理学报 55 5905]
[11] Ou Q R, Liang R Q 2002 Vacuum and Low Temperature 8 28(in Chinese)[欧琼荣、 梁荣庆 2002 真空与低温 8 28]
[12] Zhan R J, Wu C F, Wen X H, Zhu X D,Zhou H Y 2001 Vacuum Science and Technology 21 30(in Chinese)[詹如娟、 吴 丛凤、 温晓辉、 朱晓东、 周海洋 2001 真空科学与技术 21 30] 〖13] Liang Y Z, OU Q R, Liang B, Liang R Q 2008 Chin. Phys. Lett. 25 1761
[13] Chen Z Q, Zhou P Q, Chen W, Lan C H, Liu M H, Hu X W 2008 Plasma Science and Technology 10 655
[14] Lan C H, Chen Z Q, Liu M H, Hu X W 2009 Plasma Science and Technology 11 66
[15] Lan C H, Hu X W, Liu M H 2009 Chin. Phys. Lett. 26 035204
[16] Sugai H 2002 Plasma Electronic Engineering (Beijing: Science Press) (in Chinese)[菅井秀郎 2002 等离子体电子工程学 (北京:科学出版社)]
[17] Taflove A 1995 Computational Electrodynamics: the Finite-Difference Time-Domain Method (Boston: Artech House)
[18] Chen Q, Aoyagi H P, Katsurai M 1999 IEEE Trans. Plasma Science 27 164
计量
- 文章访问数: 9206
- PDF下载量: 963
- 被引次数: 0