搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有宽调谐范围的微纳光机电系统可调谐垂直腔面发射激光器研究

关宝璐 张敬兰 任秀娟 郭帅 李硕 揣东旭 郭霞 沈光地

引用本文:
Citation:

具有宽调谐范围的微纳光机电系统可调谐垂直腔面发射激光器研究

关宝璐, 张敬兰, 任秀娟, 郭帅, 李硕, 揣东旭, 郭霞, 沈光地

Micro-nano-optical machine system tunable wavelength vertical cavity surface emitting lasers with wide tunable range

Guan Bao-Lu, Zhang Jing-Lan, Ren Xiu-Juan, Guo Shuai, Li Shuo, Chuai Dong-Xu, Guo Xia, Shen Guang-Di
PDF
导出引用
  • 基于微纳机械技术设计得到了可调谐垂直腔面发射激光器结构,将具有Al0.8Ga0.2As牺牲层结构的DBR反射镜制备成微纳光机电系统,并与多量子阱有源区光纵向耦合结构相结合.其中,微纳光机电DBR结构不再是简单的分布布拉格反射镜,而是对光波具有高调制作用的可动微纳机械反射镜系统,并在静电力作用下可以动态调谐VCSEL谐振腔的激射波长.实验结果显示,当激光器调谐电压从0 V增加到7 V时,对应激射波长将从968.8 nm蓝移到950 nm,整个调谐范围达到了18.8
    The stucture of tunable vertical cavity surface emitting laser is obtained based on the micro-nano-mechanical technology. The DBR reflector with Al0.8Ga0.2As sacrificial layer consisted the micro-nano reflector systerm, which combines with the multi-well active region coupled structure. In addition, the structure of micro-nano-optical machine system is not only the DBR reflector, but also serves to tune the wavelength of lasing by the electrostatic force. Good laser characteristics are obtained with continuous tuning ranges over 18.8 nm near 968.8 to 950 nm for 0—7 V tuning bias.
    • 基金项目: 国家重点基础研究发展计划(批准号:2006CB604902),国家自然科学基金(批准号:60908012) 资助的课题.
    [1]

    Chang-Hasnain C J 2000 IEEE Journal of Selected Topics in Quantum Electronics 6 978

    [2]

    Michael C, Zhou Y, Chang-Hasnain C J 2007 Nature Photonics 1 119

    [3]

    Andrew A, Mario P 2007 Nature Photonics 1 153

    [4]

    Iga K 2000 IEEE Journal of Selected Topics in Quantum Electronics 6 1201

    [5]

    Zhang W L, Pan W, Luo B, Li X F, Zou X H, Wang M Y 2008 Chin. Phys. B 17 1821

    [6]

    Maute G M, Lambkin V, Slattery J D, Justice S A, Hegarty J P, Huyet S P, Corbett G 2008 IEEE Lasers and Electro-Optics Society (LEOS) Annual Meeting 9 498

    [7]

    Guan B L, Guo X, Deng J, Qu H W, Lian P, Dong L M, Chen M, Shen G D 2006 Chin. Phys. 15 2959

    [8]

    Guo X, Shen G D 2008 Chin. Phys. B 17 307

    [9]

    Guan B L, Guo X, Liang T, Gu X L, Deng J, Guo J, Yang H, Lin Q M, Shen G D 2006 Journal of Applied Physics 100 113508

    [10]

    Kyungwon A, Michael S F 1995 Phys. Rev. A 52 1691

    [11]

    Hunt N E J, Schubert E F, Logan R A, Zydzik G J 1992 Appl. Phys. Lett. 61 2287

    [12]

    Kressel H, Lockwood H F, Nicoll F H, Ettenberg M 1973 IEEE Journal of Quantum Electronics 9 383

    [13]

    Hayashi Y, Mukaihara T, Hatori N, Ohnoki N, Matsutani A, Koyama F, Iga K 1995 IEEE Photonics Technology Letters 7 1234

  • [1]

    Chang-Hasnain C J 2000 IEEE Journal of Selected Topics in Quantum Electronics 6 978

    [2]

    Michael C, Zhou Y, Chang-Hasnain C J 2007 Nature Photonics 1 119

    [3]

    Andrew A, Mario P 2007 Nature Photonics 1 153

    [4]

    Iga K 2000 IEEE Journal of Selected Topics in Quantum Electronics 6 1201

    [5]

    Zhang W L, Pan W, Luo B, Li X F, Zou X H, Wang M Y 2008 Chin. Phys. B 17 1821

    [6]

    Maute G M, Lambkin V, Slattery J D, Justice S A, Hegarty J P, Huyet S P, Corbett G 2008 IEEE Lasers and Electro-Optics Society (LEOS) Annual Meeting 9 498

    [7]

    Guan B L, Guo X, Deng J, Qu H W, Lian P, Dong L M, Chen M, Shen G D 2006 Chin. Phys. 15 2959

    [8]

    Guo X, Shen G D 2008 Chin. Phys. B 17 307

    [9]

    Guan B L, Guo X, Liang T, Gu X L, Deng J, Guo J, Yang H, Lin Q M, Shen G D 2006 Journal of Applied Physics 100 113508

    [10]

    Kyungwon A, Michael S F 1995 Phys. Rev. A 52 1691

    [11]

    Hunt N E J, Schubert E F, Logan R A, Zydzik G J 1992 Appl. Phys. Lett. 61 2287

    [12]

    Kressel H, Lockwood H F, Nicoll F H, Ettenberg M 1973 IEEE Journal of Quantum Electronics 9 383

    [13]

    Hayashi Y, Mukaihara T, Hatori N, Ohnoki N, Matsutani A, Koyama F, Iga K 1995 IEEE Photonics Technology Letters 7 1234

计量
  • 文章访问数:  7082
  • PDF下载量:  693
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-04-12
  • 修回日期:  2010-05-05
  • 刊出日期:  2011-03-15

/

返回文章
返回