搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MgB2 超薄膜的制备和性质研究

孙玄 黄煦 王亚洲 冯庆荣

引用本文:
Citation:

MgB2 超薄膜的制备和性质研究

孙玄, 黄煦, 王亚洲, 冯庆荣

Properties of MgB2 ultra-thin films grown by hybrid physical-chemical vapor deposition

Sun Xuan, Huang Xu, Wang Ya-Zhou, Feng Qing-Rong
PDF
导出引用
  • 利用混合物理化学气相沉积法在6H-SiC(001)衬底上制备干净的MgB2超导超薄膜.在本底气体压强、载气氢气流量等条件一定的情况下,改变B2H6流量及沉积时间,制备得到不同厚度的系列MgB2超薄膜样品,并研究了超导转变温度Tc、剩余电阻率(42K)、上临界磁场Hc2等与膜厚的关系.该系列超薄膜沿c轴外延生长,随膜厚度的变小,Tc(0)降低,(42K)升高.膜在衬底上的生长遵循Volmer-Weber岛状生长模式.对于厚度为7.5 nm的MgB2超薄膜,Tc(0) =32.8 K,(42K) =118 cm,是迄今为止所观测到的厚度为7.5 nm的MgB2超薄膜最高的Tc值;对于厚度为10 nm的MgB2膜,Tc(0)=35.5 K,(42K)=17.7 cm,上临界磁场0Hc2估算为12 T左右,零磁场、4 K时的临界电流密度Jc=1.0107 A/cm2,是迄今为止10 nm厚MgB2超薄膜的最高Jc值,且其表面连接性良好,均方根粗糙度为0.731 nm.这预示MgB2超薄膜在超导纳米器件上具有广阔的应用前景.
    We fabricate MgB2 ultra-thin films via hybrid physical-chemical vapor deposition technique. Under the same background pressure, the same H2 flow rate, by changing B2H6 flow rate and deposition time, we fabricate a series of ultra-thin films with thickness ranging from 5 nm to 80 nm. These films grow on SiC substrate, and are all c-axis epitaxial. We study the Volmer-Weber mode in the film formation. As the thickness increases, critical transition temperature Tc(0) also increases and the residual resistivity decreases. Especially, a very high Tc(0) 32.8 K for the 7.5 nm film, and Tc(0) 36.5 K, low residual resistivity (42 K) 17.7 cm, and extremely high critical current density Jc (0 T,4 K) 107 A/cm2, upper critical field Hc2(0) for 10 nm film are achieved. Moreover, by optimizing the H2 flow rate, we obtain relatively smooth surface of the 10 nm epitaxial film, with a root-mean-square roughness of 0.731 nm, which makes them well qualified for device applications.
    • 基金项目: 国家自然科学基金(批准号:50572001)、国家重点基础研究发展计划(批准号:2006CD601004)和国家基础科学人才培养基金(批准号:J0630311)资助的课题.
    [1]

    Nagamatsu J, Nakagawa N, Muranaka T,Zenitani Y,Akimitsu J 2001 Nature 410 63

    [2]

    Larbalestier D C, Cooley L D, Rikel M O, Polyanskii A A, Jiang J, Patnaik S, Cai X Y, Feldmann D M, Gurevich A, Squitieri A A, Naus M T, Eom C B, Hellstrom E E, Cava R J, Regan K A, Rogado N, Hayward M A, He T, Slusky J S, Khalifah P, Inumaru K, Haas M 2001 Nature 410 186

    [3]

    Scanlan R M, Malozemoff A P, Larbalestier D C 2004 Proc. IEEE 92 1639

    [4]

    ter Brake H J M, Buchholz F I, Burnell G, Claeson T, Crété D, Febvre P, Gerritsma G J, Hilgenkamp H, Humphreys R, Ivanov Z, Jutzi W, Khabipov M I, Mannhart J, Meye H G, Niemeyer J, Ravex A, Rogalla H, Russo M, Satchell J, Siegel M, Töpfer H, Uhlmann F H, Villégier J C, Wikborg E, Winkler D, Zorin A B 2006 Physica C 439 1

    [5]

    Shimakage H, Tatsumi M, Wang Z 2008 Supercond. Sci. Technol. 21 095009

    [6]

    Zeng X H, Alexe J V, Pogrebnyakov A V, Kotcharov A E, Jones J, Xi X X, Lysczek E M, Redwing J M, Xu S Y, Li Q, Lettieri J, Schlom D G, Tian W, Pan X Q, Liu Z K 2002 Nat. Mater. 1 35

    [7]

    Xi X X, Pogrebnyakov A V, Xu S Y, Chen K, Cui Y, Maertz E C, Zhuang C G, Li Q, Lamborn D R, Redwing J M, Liu Z K, Soukiassian A, Schlom D G, Weng X J, Dickey E C, Chen Y B, Tian W, Pan X Q, Cybart S A, Dynes R C 2007 Physica C 456 22

    [8]

    Zhuang C G, Tan T, Wang Y Z, Bai S S, Ma X B, Yang H, Zhang G H, He Y S, Wen H H, Xi X X, Feng Q R, Gan Z Z 2009 Supercond. Sci. Technol. 22 025002

    [9]

    Espiau de Lamastre R, Odier P, Villégiera J C 2007 Appl. Phys. Lett. 91 232501

    [10]

    Bouchiat V, Faucher M, Thirion C, Wernsdorfer W, Fournier T, Pannetier B 2001 Appl. Phys. Lett. 79 123

    [11]

    Zhuang C G 2008 Ph.D. Dissertation (Beijing:Peking University) p77 (in Chinese) [庄承钢 2008 博士学位论文(北京:北京大学) 第77页]

    [12]

    Pogrebnyakov A V, Tenne D A, Soukiassian A, Xi X X, Redwing J M, Vaithyanathan V, Schlom D G, Xu S Y, Li Q, Johannes M D, Kasinathan D, Pickett W E 2004 Phys. Rev. Lett. 93 147006

    [13]

    Zheng W T 2004 Thin Films Materials and Thin Films Techniques (Beijing: Chemical Industry Press) p166 (in Chinese) [郑伟涛 2004 薄膜材料与薄膜技术 (北京:化学工业出版社) 第166页]

    [14]

    Szalowski K 2006 Phys. Rev. B 74 094501

    [15]

    Ader J P, Buzdin A I 2006 Phys. Lett. A 351 343

    [16]

    Pogrebnyakov A V, Redwing J M, Jones J E, Xi X X, Xu S Y, Li Q 2003 Appl. Phys. Lett. 82 16

    [17]

    Levchenko I, Baranov O 2003 Vacuum 72 205

    [18]

    Reso D, Silinskas M, Lisker M, Gewalt A, Burte E P 2011 Thin Solid Films 519 2150

    [19]

    Yu W, Du J, Zhang L, Cui S K, Lu W B, Fu G S 2008 J. Inorg. Mater. 23 540 (in Chinese) [于 威、杜 杰、张 丽、崔双魁、路万兵、傅广生 2008 无机材料学报 23 540]

    [20]

    Yu W, Cui S K, Lu W B, Wang C S, Fu G S 2006 Chin. J. Semicond. 27 1767 (in Chinese) [于 威、崔双魁、路万兵、王春生、傅广生 2006 半导体学报 27 1767]

    [21]

    Chen J Z, Liu J H 2009 Introduction to Nanomaterials Science (Beijing: Higher Education Press) pp4—21 (in Chinese) [陈敬中、刘剑洪 2009纳米材料科学导论(北京:高等教育出版社) 第4—21页]

    [22]

    Blank D H A, Booij W, Hilgenkamp H, Vulink B, Veldhuis D, Rogalla H 1995 IEEE Trans. Appl. Supercond. 5 2786

    [23]

    Meng X F, Amous R S, Pierce F S, Wang K M, Xu C H, Deaver B S Jr, Poon S J 1991 IEEE Trans. Magn. 27 3305

    [24]

    Zeng X H, Pogrebnyakov A V, Zhu M H, Jones J E, Xi X X, Xu S Y, Wertz E, Li Q, Redwing J M, Lettieri J, Vaithyanathan V, Schlom D G, Liu Z K, Trithaveesak O, Schubert J 2003 Appl. Phys. Lett. 82 2097

    [25]

    Zhuang C G, Meng S, Zhang C Y, Feng Q R, Gan Z Z, Yang H, Jing Y, Wen H H, Xi X X 2008 J. Appl. Phys. 104 013924

    [26]

    Zhang Y H 2009 Superconductivity Physics (3rd ed)(Hefei: University of Science and Technology of China Press) p236 (in Chinese) [张裕恒 2009 超导物理 (第3版) (合肥:中国科学技术大学出版社) 第236页 ]

    [27]

    Gao J L, Zhou J Z, Zhang L 2008 Physics 37 493 (in Chinese) [高建龙、周建中、张 莉 2008 物理 37 493]

    [28]

    Xu S Y, Li Q, Wertz E, Hu Y F, Pogrebnyakov A V, Zeng X H, Xi X X, Redwing J M 2003 Phys. Rev. B 68 224501

    [29]

    Wu Y S, Zhao Y, Wexler D, Kim J H, Dou S X 2008 Physica C 468 218

    [30]

    Lee S, Chen K, Baek S H, Dai W Q, Moeckly B H, Li Q, Xi X X, Rzchowski M S, Eom C B 2009 IEEE Trans. Appl. Supercond. 19 2811

    [31]

    Yamamoto H, Tsukamoto A, Hasegawa H, Saitoh K, Okada M, Kitaguchi H 2005 Physica C 426—431 1444

    [32]

    Zhu H M, Zhang Y B, Sun X L, Xiong W J, Zhou S P 2007 Physica C 452 11

    [33]

    Gubin A I, Il’in K S, Vitusevich S A, Siegel M, Klein N 2005 Phys. Rev. B 72 064503

    [34]

    Suh J D, Sung G Y 1995 Physica C 252 54

  • [1]

    Nagamatsu J, Nakagawa N, Muranaka T,Zenitani Y,Akimitsu J 2001 Nature 410 63

    [2]

    Larbalestier D C, Cooley L D, Rikel M O, Polyanskii A A, Jiang J, Patnaik S, Cai X Y, Feldmann D M, Gurevich A, Squitieri A A, Naus M T, Eom C B, Hellstrom E E, Cava R J, Regan K A, Rogado N, Hayward M A, He T, Slusky J S, Khalifah P, Inumaru K, Haas M 2001 Nature 410 186

    [3]

    Scanlan R M, Malozemoff A P, Larbalestier D C 2004 Proc. IEEE 92 1639

    [4]

    ter Brake H J M, Buchholz F I, Burnell G, Claeson T, Crété D, Febvre P, Gerritsma G J, Hilgenkamp H, Humphreys R, Ivanov Z, Jutzi W, Khabipov M I, Mannhart J, Meye H G, Niemeyer J, Ravex A, Rogalla H, Russo M, Satchell J, Siegel M, Töpfer H, Uhlmann F H, Villégier J C, Wikborg E, Winkler D, Zorin A B 2006 Physica C 439 1

    [5]

    Shimakage H, Tatsumi M, Wang Z 2008 Supercond. Sci. Technol. 21 095009

    [6]

    Zeng X H, Alexe J V, Pogrebnyakov A V, Kotcharov A E, Jones J, Xi X X, Lysczek E M, Redwing J M, Xu S Y, Li Q, Lettieri J, Schlom D G, Tian W, Pan X Q, Liu Z K 2002 Nat. Mater. 1 35

    [7]

    Xi X X, Pogrebnyakov A V, Xu S Y, Chen K, Cui Y, Maertz E C, Zhuang C G, Li Q, Lamborn D R, Redwing J M, Liu Z K, Soukiassian A, Schlom D G, Weng X J, Dickey E C, Chen Y B, Tian W, Pan X Q, Cybart S A, Dynes R C 2007 Physica C 456 22

    [8]

    Zhuang C G, Tan T, Wang Y Z, Bai S S, Ma X B, Yang H, Zhang G H, He Y S, Wen H H, Xi X X, Feng Q R, Gan Z Z 2009 Supercond. Sci. Technol. 22 025002

    [9]

    Espiau de Lamastre R, Odier P, Villégiera J C 2007 Appl. Phys. Lett. 91 232501

    [10]

    Bouchiat V, Faucher M, Thirion C, Wernsdorfer W, Fournier T, Pannetier B 2001 Appl. Phys. Lett. 79 123

    [11]

    Zhuang C G 2008 Ph.D. Dissertation (Beijing:Peking University) p77 (in Chinese) [庄承钢 2008 博士学位论文(北京:北京大学) 第77页]

    [12]

    Pogrebnyakov A V, Tenne D A, Soukiassian A, Xi X X, Redwing J M, Vaithyanathan V, Schlom D G, Xu S Y, Li Q, Johannes M D, Kasinathan D, Pickett W E 2004 Phys. Rev. Lett. 93 147006

    [13]

    Zheng W T 2004 Thin Films Materials and Thin Films Techniques (Beijing: Chemical Industry Press) p166 (in Chinese) [郑伟涛 2004 薄膜材料与薄膜技术 (北京:化学工业出版社) 第166页]

    [14]

    Szalowski K 2006 Phys. Rev. B 74 094501

    [15]

    Ader J P, Buzdin A I 2006 Phys. Lett. A 351 343

    [16]

    Pogrebnyakov A V, Redwing J M, Jones J E, Xi X X, Xu S Y, Li Q 2003 Appl. Phys. Lett. 82 16

    [17]

    Levchenko I, Baranov O 2003 Vacuum 72 205

    [18]

    Reso D, Silinskas M, Lisker M, Gewalt A, Burte E P 2011 Thin Solid Films 519 2150

    [19]

    Yu W, Du J, Zhang L, Cui S K, Lu W B, Fu G S 2008 J. Inorg. Mater. 23 540 (in Chinese) [于 威、杜 杰、张 丽、崔双魁、路万兵、傅广生 2008 无机材料学报 23 540]

    [20]

    Yu W, Cui S K, Lu W B, Wang C S, Fu G S 2006 Chin. J. Semicond. 27 1767 (in Chinese) [于 威、崔双魁、路万兵、王春生、傅广生 2006 半导体学报 27 1767]

    [21]

    Chen J Z, Liu J H 2009 Introduction to Nanomaterials Science (Beijing: Higher Education Press) pp4—21 (in Chinese) [陈敬中、刘剑洪 2009纳米材料科学导论(北京:高等教育出版社) 第4—21页]

    [22]

    Blank D H A, Booij W, Hilgenkamp H, Vulink B, Veldhuis D, Rogalla H 1995 IEEE Trans. Appl. Supercond. 5 2786

    [23]

    Meng X F, Amous R S, Pierce F S, Wang K M, Xu C H, Deaver B S Jr, Poon S J 1991 IEEE Trans. Magn. 27 3305

    [24]

    Zeng X H, Pogrebnyakov A V, Zhu M H, Jones J E, Xi X X, Xu S Y, Wertz E, Li Q, Redwing J M, Lettieri J, Vaithyanathan V, Schlom D G, Liu Z K, Trithaveesak O, Schubert J 2003 Appl. Phys. Lett. 82 2097

    [25]

    Zhuang C G, Meng S, Zhang C Y, Feng Q R, Gan Z Z, Yang H, Jing Y, Wen H H, Xi X X 2008 J. Appl. Phys. 104 013924

    [26]

    Zhang Y H 2009 Superconductivity Physics (3rd ed)(Hefei: University of Science and Technology of China Press) p236 (in Chinese) [张裕恒 2009 超导物理 (第3版) (合肥:中国科学技术大学出版社) 第236页 ]

    [27]

    Gao J L, Zhou J Z, Zhang L 2008 Physics 37 493 (in Chinese) [高建龙、周建中、张 莉 2008 物理 37 493]

    [28]

    Xu S Y, Li Q, Wertz E, Hu Y F, Pogrebnyakov A V, Zeng X H, Xi X X, Redwing J M 2003 Phys. Rev. B 68 224501

    [29]

    Wu Y S, Zhao Y, Wexler D, Kim J H, Dou S X 2008 Physica C 468 218

    [30]

    Lee S, Chen K, Baek S H, Dai W Q, Moeckly B H, Li Q, Xi X X, Rzchowski M S, Eom C B 2009 IEEE Trans. Appl. Supercond. 19 2811

    [31]

    Yamamoto H, Tsukamoto A, Hasegawa H, Saitoh K, Okada M, Kitaguchi H 2005 Physica C 426—431 1444

    [32]

    Zhu H M, Zhang Y B, Sun X L, Xiong W J, Zhou S P 2007 Physica C 452 11

    [33]

    Gubin A I, Il’in K S, Vitusevich S A, Siegel M, Klein N 2005 Phys. Rev. B 72 064503

    [34]

    Suh J D, Sung G Y 1995 Physica C 252 54

  • [1] 仇鹏, 刘恒, 朱晓丽, 田丰, 杜梦超, 邱洪宇, 陈冠良, 胡玉玉, 孔德林, 杨晋, 卫会云, 彭铭曾, 郑新和. III族氮化物半导体及其合金的原子层沉积和应用. 物理学报, 2024, 73(3): 038102. doi: 10.7498/aps.73.20230832
    [2] 董晓莉, 金魁, 袁洁, 周放, 张广铭, 赵忠贤. FeSe基超导单晶与薄膜研究新进展:自旋向列序、电子相分离及高临界参数. 物理学报, 2018, 67(20): 207410. doi: 10.7498/aps.67.20181638
    [3] 周章渝, 肖寒, 王松, 傅兴华, 闫江. MgB2/B/MgB2约瑟夫森结的制备与直流特性. 物理学报, 2016, 65(18): 180301. doi: 10.7498/aps.65.180301
    [4] 张宇河, 牛冬梅, 吕路, 谢海鹏, 朱孟龙, 张红, 刘鹏, 曹宁通, 高永立. 2,7-二辛基[1]苯并噻吩并[3,2-b]苯并噻吩在Cu(100)上的吸附生长以及能级结构演化. 物理学报, 2016, 65(15): 157901. doi: 10.7498/aps.65.157901
    [5] 阮聪, 孙晓民, 宋亦旭. 元胞方法与蒙特卡洛方法相结合的薄膜生长过程模拟. 物理学报, 2015, 64(3): 038201. doi: 10.7498/aps.64.038201
    [6] 陈仙, 王炎武, 王晓艳, 安书董, 王小波, 赵玉清. 非晶氧化钛薄膜形成过程中钛离子能量对表面结构影响的机理. 物理学报, 2014, 63(24): 246801. doi: 10.7498/aps.63.246801
    [7] 颜超, 黄莉莉, 何兴道. 入射能量对Au/Au(111)薄膜生长影响的分子动力学模拟. 物理学报, 2014, 63(12): 126801. doi: 10.7498/aps.63.126801
    [8] 潘杰云, 张辰, 何法, 冯庆荣. MgO(111)衬底MgB2 超薄膜的制备和性质研究. 物理学报, 2013, 62(12): 127401. doi: 10.7498/aps.62.127401
    [9] 鲍善永, 董武军, 徐兴, 栾田宝, 李杰, 张庆瑜. 氧分压对Mg掺杂ZnO薄膜结晶质量和光学特性的影响. 物理学报, 2011, 60(3): 036804. doi: 10.7498/aps.60.036804
    [10] 任树洋, 任忠鸣, 任维丽. 晶粒尺寸对气相沉积薄膜磁取向生长的影响研究. 物理学报, 2011, 60(1): 016104. doi: 10.7498/aps.60.016104
    [11] 李林娜, 陈新亮, 王斐, 孙建, 张德坤, 耿新华, 赵颖. H2 气对脉冲磁控溅射铝掺杂氧化锌薄膜性能的影响. 物理学报, 2011, 60(6): 067304. doi: 10.7498/aps.60.067304
    [12] 刘祖黎, 苑新喜, 魏合林, 姚凯伦. 非均一相互作用能对超薄膜生长影响的Monte Carlo模拟研究. 物理学报, 2010, 59(9): 6430-6437. doi: 10.7498/aps.59.6430
    [13] 陆杭军, 吴锋民. 非均匀基底上三维薄膜生长的模拟研究. 物理学报, 2006, 55(1): 424-429. doi: 10.7498/aps.55.424
    [14] 李 勇, 孙成伟, 刘志文, 张庆瑜. 磁控溅射ZnO薄膜生长的等离子体发射光谱研究. 物理学报, 2006, 55(8): 4232-4237. doi: 10.7498/aps.55.4232
    [15] 杨 春, 余 毅, 李言荣, 刘永华. 温度对ZnO/Al2O3(0001)界面的吸附、扩散及生长初期模式的影响. 物理学报, 2005, 54(12): 5907-5913. doi: 10.7498/aps.54.5907
    [16] 谢国锋, 王德武, 应纯同. 改进的DLA方法模拟薄膜二维生长. 物理学报, 2005, 54(5): 2212-2219. doi: 10.7498/aps.54.2212
    [17] 郑小平, 张佩峰, 刘 军, 贺德衍, 马健泰. 薄膜外延生长的计算机模拟. 物理学报, 2004, 53(8): 2687-2693. doi: 10.7498/aps.53.2687
    [18] 王晓平, 谢 峰, 石勤伟, 赵特秀. 晶格失配对异质外延超薄膜生长中成核特性的影响. 物理学报, 2004, 53(8): 2699-2704. doi: 10.7498/aps.53.2699
    [19] 陈敏, 魏合林, 刘祖黎, 姚凯伦. 沉积粒子能量对薄膜早期生长过程的影响. 物理学报, 2001, 50(12): 2446-2451. doi: 10.7498/aps.50.2446
    [20] 杨 宁, 陈光华, 张 阳, 公维宾, 朱鹤孙. 薄膜生长的理论模型与Monte Carlo模拟. 物理学报, 2000, 49(11): 2225-2229. doi: 10.7498/aps.49.2225
计量
  • 文章访问数:  6112
  • PDF下载量:  1138
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-12-10
  • 修回日期:  2011-01-20
  • 刊出日期:  2011-04-05

/

返回文章
返回