搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MgO(111)衬底MgB2 超薄膜的制备和性质研究

潘杰云 张辰 何法 冯庆荣

引用本文:
Citation:

MgO(111)衬底MgB2 超薄膜的制备和性质研究

潘杰云, 张辰, 何法, 冯庆荣

Properties of MgB2 ultra-thin films fabricated on MgO(111) substrate by hybrid physical-chemical vapor deposition

Pan Jie-Yun, Zhang Chen, He Fa, Feng Qing-Rong
PDF
导出引用
  • 利用混合物理化学气相沉积法(HPCVD)在MgO(111)衬底上制备了干净的MgB2超导超薄膜. 在背景气体压强, 载气氢气流量以及沉积时间一定的情况下, 改变B2H6的流量, 制备得到不同厚度系列的MgB2超导薄膜样品, 并测量了其超导转变温度 Tc, 临界电流密度Jc等临界参量. 该系列超导薄膜沿c轴外延生长, 表面具有良好的连接性, 且有很高的超导转变温度Tc(0) ≈ 35-38 K和很小的剩余电阻率ρ(42 K) ≈ 1.8-20.3 μΩ·cm-1. 随着膜厚的减小而减小, 临界温度变低, 而剩余电阻率变大. 其中20 nm的样品在零磁场, 5K时的临界电流密度Jc ≈ 2.3×107 A/cm2. 表明了利用HPCVD在MgO(111)衬底上制备的MgB2超薄膜有很好的性能, 预示了其在超导电子器件中广阔的应用前景.
    We fabricate MgB2 ultra-thin films via hybrid physics-chemical vapor deposition technique (HPCVD). Under the same background pressure, the same H2 flow rate and the same deposition time, by changing the B2H6 flow rate, we fabricate a series of ultra-thin films with thickness values ranging from 10 nm to 40 nm. These films grow on MgO(111) substrate, and are all c-axis epitaxial. These films show the good connectivity, a very high Tc(0) ≈ 35-38 K and a very low residual resistivity ρ(42 K) ≈ 1.8-20.3 μΩ·cm-1. As the thickness increases, critical transition temperature also increases and the residual resistivity decreases. The 20 nm film also shows an extremely high critical current density Jc (0 T, 5 K) ≈ 2.3×107 A/cm2, which indicates that the films fabricated by HPCVD are well qualified for device applications.
    • 基金项目: 国家重点基础研究发展计划 (批准号: 2011CB605904)、国家自然科学基金国家基础科学人才培养基金(批准号: J0630311)和国家自然科学基金(批准号: 51177160)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB605904), the Fund for Fostering Talents in Basic Science of the National Natural Science Foundation of China (Grant No. J0630311), and the National Natural Science Foundation of China (Grant No. 51177160).
    [1]

    Diamanti E, Langrock E, Fejer M M, Yamamoto Y, Takesue H 2006 Opt. Lett. 31 727

    [2]

    Zhao Q Y, Zhang X P, Zhang L B, Zhao X D, Kang L, Wu P H 2012 J. Lighwave Technol. 30 2583

    [3]

    Gol'tsman G N, Kunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A 2001 Appl. Phys. Lett. 79 705

    [4]

    Martin D, Natalia D, Boris G, Andrei P 2009 J. Selected Topics Quantum Electronics 14 399

    [5]

    Hadfield R H 2009 Nature Photon 3 696

    [6]

    Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J 2001 Nature 410 63

    [7]

    Shimakage H, Tatsumi M, Wang Z 2008 Supercond. Sci. Technol. 21 095009

    [8]

    Shibata H, Maruyama T, Akazaki T, Takersure H, Honjo T, Tokura Y 2008 Physica C 468 1992

    [9]

    Sun X, Huang X, Wang Y Z, Feng Q R 2011 Acta Phys. Sin. 60 087401 (in Chinese) [孙玄, 黄煦, 王亚洲, 冯庆荣 2011物理学报 60 087401]

    [10]

    Zhang Y H, Lin Z Y, Dai Q, Li D Y, Wang Y B, Zhang Y, Wang Y, Feng Q R 2011 Supercond. Sci. Technol. 24 015103

    [11]

    Ferdeghinia C, Ferrandoa V, Grassanoa G, Ramadana W, Braccinia V, Puttia M, Manfrinettib P, Palenzona A 2002 Physica C 372 1270

    [12]

    Ahrens T J 1995 Rock Physics and Phase Relations: A Handbook of Physical Constants (1st Ed.) (Washington: American Geophysical Union) p105

    [13]

    Vaglio R, Maglione M G, Capua R D 2002 Supercond. Sci. Technol. 15 1236

    [14]

    Wang S F, Zhou Y L, Zhu Y B, Liu Z, Zhang Q, Chen Z H, Lu H B, Dai S Y, Yang G Z 2003 Thin Solid Films 443 120

    [15]

    Zeng X H, Pogrebnyakov A V, Kotcharov A, Jones J E, Xi X X, Lysczek E M, Redwing J M, Xu S Y, Li Q, Lettien J, Schlom D G, Tian W, Pan X Q, Liu Z K 2002 Nat. Mater. 1 35

    [16]

    Jia Z, Guo J P, Lu Y, Wang X F, Chen C P, Xu J, Wang X N, Zhu M, Feng Q R 2006 Front Phys. China 1 117

    [17]

    He T, Cava R J, John M R 2002 Appl. Phys. Lett. 80 290

    [18]

    Wang Y Z, Zhuang C G, Sun X, Huang X, Fu Q, Liao Z M, Yu D P, Feng Q R 2009 Supercond. Sci. Technol. 22 125015

    [19]

    Bean C P 1962 Phys. Rev. Lett. 8 250

  • [1]

    Diamanti E, Langrock E, Fejer M M, Yamamoto Y, Takesue H 2006 Opt. Lett. 31 727

    [2]

    Zhao Q Y, Zhang X P, Zhang L B, Zhao X D, Kang L, Wu P H 2012 J. Lighwave Technol. 30 2583

    [3]

    Gol'tsman G N, Kunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A 2001 Appl. Phys. Lett. 79 705

    [4]

    Martin D, Natalia D, Boris G, Andrei P 2009 J. Selected Topics Quantum Electronics 14 399

    [5]

    Hadfield R H 2009 Nature Photon 3 696

    [6]

    Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J 2001 Nature 410 63

    [7]

    Shimakage H, Tatsumi M, Wang Z 2008 Supercond. Sci. Technol. 21 095009

    [8]

    Shibata H, Maruyama T, Akazaki T, Takersure H, Honjo T, Tokura Y 2008 Physica C 468 1992

    [9]

    Sun X, Huang X, Wang Y Z, Feng Q R 2011 Acta Phys. Sin. 60 087401 (in Chinese) [孙玄, 黄煦, 王亚洲, 冯庆荣 2011物理学报 60 087401]

    [10]

    Zhang Y H, Lin Z Y, Dai Q, Li D Y, Wang Y B, Zhang Y, Wang Y, Feng Q R 2011 Supercond. Sci. Technol. 24 015103

    [11]

    Ferdeghinia C, Ferrandoa V, Grassanoa G, Ramadana W, Braccinia V, Puttia M, Manfrinettib P, Palenzona A 2002 Physica C 372 1270

    [12]

    Ahrens T J 1995 Rock Physics and Phase Relations: A Handbook of Physical Constants (1st Ed.) (Washington: American Geophysical Union) p105

    [13]

    Vaglio R, Maglione M G, Capua R D 2002 Supercond. Sci. Technol. 15 1236

    [14]

    Wang S F, Zhou Y L, Zhu Y B, Liu Z, Zhang Q, Chen Z H, Lu H B, Dai S Y, Yang G Z 2003 Thin Solid Films 443 120

    [15]

    Zeng X H, Pogrebnyakov A V, Kotcharov A, Jones J E, Xi X X, Lysczek E M, Redwing J M, Xu S Y, Li Q, Lettien J, Schlom D G, Tian W, Pan X Q, Liu Z K 2002 Nat. Mater. 1 35

    [16]

    Jia Z, Guo J P, Lu Y, Wang X F, Chen C P, Xu J, Wang X N, Zhu M, Feng Q R 2006 Front Phys. China 1 117

    [17]

    He T, Cava R J, John M R 2002 Appl. Phys. Lett. 80 290

    [18]

    Wang Y Z, Zhuang C G, Sun X, Huang X, Fu Q, Liao Z M, Yu D P, Feng Q R 2009 Supercond. Sci. Technol. 22 125015

    [19]

    Bean C P 1962 Phys. Rev. Lett. 8 250

  • [1] 果辰, 蔡欣炜, 罗文浩, 黄子耕, 冯庆荣, 甘子钊. 原位电阻测试分析Mg(BH4)2制备MgB2的成相过程. 物理学报, 2021, 70(19): 197401. doi: 10.7498/aps.70.20210620
    [2] 王娇, 刘少辉, 周梦, 郝好山. 抗坏血酸后处理化学气相法制备的聚3, 4-乙撑二氧噻吩薄膜及其热电性能. 物理学报, 2020, 69(14): 147201. doi: 10.7498/aps.69.20200431
    [3] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移. 物理学报, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [4] 周章渝, 肖寒, 王松, 傅兴华, 闫江. MgB2/B/MgB2约瑟夫森结的制备与直流特性. 物理学报, 2016, 65(18): 180301. doi: 10.7498/aps.65.180301
    [5] 张健, 巴德纯, 赵崇凌, 刘坤, 杜广煜. 线性微波化学气相沉积制备SiNx薄膜的微结构及光学性能研究. 物理学报, 2015, 64(6): 067801. doi: 10.7498/aps.64.067801
    [6] 张海龙, 刘丰珍, 朱美芳. 化学气相沉积中影蔽效应对硅薄膜表面形貌和微结构的影响. 物理学报, 2014, 63(17): 177303. doi: 10.7498/aps.63.177303
    [7] 冯秋菊, 许瑞卓, 郭慧颖, 徐坤, 李荣, 陶鹏程, 梁红伟, 刘佳媛, 梅艺赢. 衬底位置对化学气相沉积法制备的磷掺杂p型ZnO纳米材料形貌和特性的影响. 物理学报, 2014, 63(16): 168101. doi: 10.7498/aps.63.168101
    [8] 王浪, 冯伟, 杨连乔, 张建华. 化学气相沉积法制备石墨烯的铜衬底预处理研究. 物理学报, 2014, 63(17): 176801. doi: 10.7498/aps.63.176801
    [9] 张焱, 王越, 马平, 冯庆荣. 混合物理化学气相沉积法制备MgB2单晶纳米晶片的研究. 物理学报, 2014, 63(23): 237401. doi: 10.7498/aps.63.237401
    [10] 孙玄, 黄煦, 王亚洲, 冯庆荣. MgB2 超薄膜的制备和性质研究. 物理学报, 2011, 60(8): 087401. doi: 10.7498/aps.60.087401
    [11] 于天燕, 秦杨, 刘定权, 张凤山. SrF2-CaF2混合物薄膜的物理及红外光学特性研究. 物理学报, 2010, 59(4): 2546-2550. doi: 10.7498/aps.59.2546
    [12] 余增强, 吴 克, 马小柏, 聂瑞娟, 王福仁. 多层膜外退火方法制备MgB2超导薄膜. 物理学报, 2007, 56(1): 512-517. doi: 10.7498/aps.56.512
    [13] 刘小兵, 史向华, 廖太长, 任 鹏, 柳 玥, 柳 毅, 熊祖洪, 丁训民, 侯晓远. 声空化物理化学综合法制备发光多孔硅薄膜的微结构与发光特性. 物理学报, 2005, 54(1): 416-421. doi: 10.7498/aps.54.416
    [14] 王淑芳, B. B. Jin, 刘 震, 周岳亮, 陈正豪, 吕惠宾, 程波林, 杨国桢. MgB2超导薄膜的微波测量. 物理学报, 2005, 54(5): 2325-2328. doi: 10.7498/aps.54.2325
    [15] 于 威, 刘丽辉, 侯海虹, 丁学成, 韩 理, 傅广生. 螺旋波等离子体增强化学气相沉积氮化硅薄膜. 物理学报, 2003, 52(3): 687-691. doi: 10.7498/aps.52.687
    [16] 闫小琴, 刘祖琴, 唐东升, 慈立杰, 刘东方, 周振平, 梁迎新, 袁华军, 周维亚, 王 刚. 衬底对化学气相沉积法制备氧化硅纳米线的影响. 物理学报, 2003, 52(2): 454-458. doi: 10.7498/aps.52.454
    [17] 杨东升, 吴柏枚, 李 波, 郑卫华, 李世燕, 陈仙辉, 曹烈兆. MgB2混合态热导率的反常增强. 物理学报, 2003, 52(8): 2015-2019. doi: 10.7498/aps.52.2015
    [18] 马平, 刘乐园, 张升原, 王昕, 谢飞翔, 邓鹏, 聂瑞娟, 王守证, 戴远东, 王福仁. 直流磁控溅射一步法原位制备MgB2超导薄膜. 物理学报, 2002, 51(2): 406-409. doi: 10.7498/aps.51.406
    [19] 胡颖. 微波等离子体化学气相沉积方法在Si衬底上生长SiC纳米线. 物理学报, 2001, 50(12): 2452-2455. doi: 10.7498/aps.50.2452
    [20] 孙力, 陈延峰, 于涛, 闵乃本, 姜晓明, 修立松. 金属有机化学气相沉积法制备钛酸铅铁电薄膜. 物理学报, 1996, 45(10): 1729-1736. doi: 10.7498/aps.45.1729
计量
  • 文章访问数:  3236
  • PDF下载量:  494
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-15
  • 修回日期:  2012-12-09
  • 刊出日期:  2013-06-05

MgO(111)衬底MgB2 超薄膜的制备和性质研究

  • 1. 北京大学物理学院, 应用超导研究中心, 人工微结构与介观物理国家重点实验室, 北京 100871;
  • 2. 北京大学物理学院, 核物理与核技术国家重点实验室, 北京 100871
    基金项目: 国家重点基础研究发展计划 (批准号: 2011CB605904)、国家自然科学基金国家基础科学人才培养基金(批准号: J0630311)和国家自然科学基金(批准号: 51177160)资助的课题.

摘要: 利用混合物理化学气相沉积法(HPCVD)在MgO(111)衬底上制备了干净的MgB2超导超薄膜. 在背景气体压强, 载气氢气流量以及沉积时间一定的情况下, 改变B2H6的流量, 制备得到不同厚度系列的MgB2超导薄膜样品, 并测量了其超导转变温度 Tc, 临界电流密度Jc等临界参量. 该系列超导薄膜沿c轴外延生长, 表面具有良好的连接性, 且有很高的超导转变温度Tc(0) ≈ 35-38 K和很小的剩余电阻率ρ(42 K) ≈ 1.8-20.3 μΩ·cm-1. 随着膜厚的减小而减小, 临界温度变低, 而剩余电阻率变大. 其中20 nm的样品在零磁场, 5K时的临界电流密度Jc ≈ 2.3×107 A/cm2. 表明了利用HPCVD在MgO(111)衬底上制备的MgB2超薄膜有很好的性能, 预示了其在超导电子器件中广阔的应用前景.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回