-
利用混合物理化学气相沉积法(HPCVD)在MgO(111)衬底上制备了干净的MgB2超导超薄膜. 在背景气体压强, 载气氢气流量以及沉积时间一定的情况下, 改变B2H6的流量, 制备得到不同厚度系列的MgB2超导薄膜样品, 并测量了其超导转变温度 Tc, 临界电流密度Jc等临界参量. 该系列超导薄膜沿c轴外延生长, 表面具有良好的连接性, 且有很高的超导转变温度Tc(0) ≈ 35-38 K和很小的剩余电阻率ρ(42 K) ≈ 1.8-20.3 μΩ·cm-1. 随着膜厚的减小而减小, 临界温度变低, 而剩余电阻率变大. 其中20 nm的样品在零磁场, 5K时的临界电流密度Jc ≈ 2.3×107 A/cm2. 表明了利用HPCVD在MgO(111)衬底上制备的MgB2超薄膜有很好的性能, 预示了其在超导电子器件中广阔的应用前景.
-
关键词:
- MgO(111)衬底 /
- MgB2超薄膜 /
- 混合物理化学气相沉积
We fabricate MgB2 ultra-thin films via hybrid physics-chemical vapor deposition technique (HPCVD). Under the same background pressure, the same H2 flow rate and the same deposition time, by changing the B2H6 flow rate, we fabricate a series of ultra-thin films with thickness values ranging from 10 nm to 40 nm. These films grow on MgO(111) substrate, and are all c-axis epitaxial. These films show the good connectivity, a very high Tc(0) ≈ 35-38 K and a very low residual resistivity ρ(42 K) ≈ 1.8-20.3 μΩ·cm-1. As the thickness increases, critical transition temperature also increases and the residual resistivity decreases. The 20 nm film also shows an extremely high critical current density Jc (0 T, 5 K) ≈ 2.3×107 A/cm2, which indicates that the films fabricated by HPCVD are well qualified for device applications.[1] Diamanti E, Langrock E, Fejer M M, Yamamoto Y, Takesue H 2006 Opt. Lett. 31 727
[2] Zhao Q Y, Zhang X P, Zhang L B, Zhao X D, Kang L, Wu P H 2012 J. Lighwave Technol. 30 2583
[3] Gol'tsman G N, Kunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A 2001 Appl. Phys. Lett. 79 705
[4] Martin D, Natalia D, Boris G, Andrei P 2009 J. Selected Topics Quantum Electronics 14 399
[5] Hadfield R H 2009 Nature Photon 3 696
[6] Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J 2001 Nature 410 63
[7] Shimakage H, Tatsumi M, Wang Z 2008 Supercond. Sci. Technol. 21 095009
[8] Shibata H, Maruyama T, Akazaki T, Takersure H, Honjo T, Tokura Y 2008 Physica C 468 1992
[9] Sun X, Huang X, Wang Y Z, Feng Q R 2011 Acta Phys. Sin. 60 087401 (in Chinese) [孙玄, 黄煦, 王亚洲, 冯庆荣 2011物理学报 60 087401]
[10] Zhang Y H, Lin Z Y, Dai Q, Li D Y, Wang Y B, Zhang Y, Wang Y, Feng Q R 2011 Supercond. Sci. Technol. 24 015103
[11] Ferdeghinia C, Ferrandoa V, Grassanoa G, Ramadana W, Braccinia V, Puttia M, Manfrinettib P, Palenzona A 2002 Physica C 372 1270
[12] Ahrens T J 1995 Rock Physics and Phase Relations: A Handbook of Physical Constants (1st Ed.) (Washington: American Geophysical Union) p105
[13] Vaglio R, Maglione M G, Capua R D 2002 Supercond. Sci. Technol. 15 1236
[14] Wang S F, Zhou Y L, Zhu Y B, Liu Z, Zhang Q, Chen Z H, Lu H B, Dai S Y, Yang G Z 2003 Thin Solid Films 443 120
[15] Zeng X H, Pogrebnyakov A V, Kotcharov A, Jones J E, Xi X X, Lysczek E M, Redwing J M, Xu S Y, Li Q, Lettien J, Schlom D G, Tian W, Pan X Q, Liu Z K 2002 Nat. Mater. 1 35
[16] Jia Z, Guo J P, Lu Y, Wang X F, Chen C P, Xu J, Wang X N, Zhu M, Feng Q R 2006 Front Phys. China 1 117
[17] He T, Cava R J, John M R 2002 Appl. Phys. Lett. 80 290
[18] Wang Y Z, Zhuang C G, Sun X, Huang X, Fu Q, Liao Z M, Yu D P, Feng Q R 2009 Supercond. Sci. Technol. 22 125015
[19] Bean C P 1962 Phys. Rev. Lett. 8 250
-
[1] Diamanti E, Langrock E, Fejer M M, Yamamoto Y, Takesue H 2006 Opt. Lett. 31 727
[2] Zhao Q Y, Zhang X P, Zhang L B, Zhao X D, Kang L, Wu P H 2012 J. Lighwave Technol. 30 2583
[3] Gol'tsman G N, Kunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A 2001 Appl. Phys. Lett. 79 705
[4] Martin D, Natalia D, Boris G, Andrei P 2009 J. Selected Topics Quantum Electronics 14 399
[5] Hadfield R H 2009 Nature Photon 3 696
[6] Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J 2001 Nature 410 63
[7] Shimakage H, Tatsumi M, Wang Z 2008 Supercond. Sci. Technol. 21 095009
[8] Shibata H, Maruyama T, Akazaki T, Takersure H, Honjo T, Tokura Y 2008 Physica C 468 1992
[9] Sun X, Huang X, Wang Y Z, Feng Q R 2011 Acta Phys. Sin. 60 087401 (in Chinese) [孙玄, 黄煦, 王亚洲, 冯庆荣 2011物理学报 60 087401]
[10] Zhang Y H, Lin Z Y, Dai Q, Li D Y, Wang Y B, Zhang Y, Wang Y, Feng Q R 2011 Supercond. Sci. Technol. 24 015103
[11] Ferdeghinia C, Ferrandoa V, Grassanoa G, Ramadana W, Braccinia V, Puttia M, Manfrinettib P, Palenzona A 2002 Physica C 372 1270
[12] Ahrens T J 1995 Rock Physics and Phase Relations: A Handbook of Physical Constants (1st Ed.) (Washington: American Geophysical Union) p105
[13] Vaglio R, Maglione M G, Capua R D 2002 Supercond. Sci. Technol. 15 1236
[14] Wang S F, Zhou Y L, Zhu Y B, Liu Z, Zhang Q, Chen Z H, Lu H B, Dai S Y, Yang G Z 2003 Thin Solid Films 443 120
[15] Zeng X H, Pogrebnyakov A V, Kotcharov A, Jones J E, Xi X X, Lysczek E M, Redwing J M, Xu S Y, Li Q, Lettien J, Schlom D G, Tian W, Pan X Q, Liu Z K 2002 Nat. Mater. 1 35
[16] Jia Z, Guo J P, Lu Y, Wang X F, Chen C P, Xu J, Wang X N, Zhu M, Feng Q R 2006 Front Phys. China 1 117
[17] He T, Cava R J, John M R 2002 Appl. Phys. Lett. 80 290
[18] Wang Y Z, Zhuang C G, Sun X, Huang X, Fu Q, Liao Z M, Yu D P, Feng Q R 2009 Supercond. Sci. Technol. 22 125015
[19] Bean C P 1962 Phys. Rev. Lett. 8 250
计量
- 文章访问数: 5645
- PDF下载量: 511
- 被引次数: 0