搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

199Hg+光频标的黑体辐射频移

刘李辉 邹宏新 刘曲 李玺

引用本文:
Citation:

199Hg+光频标的黑体辐射频移

刘李辉, 邹宏新, 刘曲, 李玺

Blackbody-radiation shift in a 199Hg+ ion optical frequency standard

Liu Li-Hui, Zou Hong-Xin, Liu Qu, Li Xi
PDF
导出引用
  • 光学频率标准会受到环境温度的黑体辐射影响发生频移,进而影响其准确度. 本文估算了199Hg+的超精细能级5d106s2S1/2 (F=0)和5d96s2 2D5/2 (F=2)的极化率,得到了室温(300 K)下黑体辐射引起的相对频移为-5.410-17, 最后讨论了低温环境下黑体辐射对199Hg+光频标的影响.
    The background blackbody radiation causes the shift of the hyperfine energy level and affects the accuracy of the optical frequency standard. The polarizabilities of the hyperfine energy levels 5d106s2S1/2 (F=0) and 5d96s2 2D5/2 (F=2) of 199Hg+ are evaluated and the relative frequency shift at room temperature due to blackboby radiation is calculated to be -5.410-17. Finally the effect of blackbody radiation on single 199Hg+ optical frequency standard is discussed at an ultralow temperature.
    • 基金项目: 国家自然科学基金(批准号: 10904174)和湖南省自然科学基金(批准号: 11JJ2004)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10904174) and Hunan Provincial Natural Science Foundation of China (Grant No. 11JJ2004).
    [1]

    Bender P L, Hall J L, Garstang R H, Pichanick F M J, Smith W W, Barger R L, West B J 1976 Bull. Am. Phys. Soc. 21 599

    [2]

    Rosenband T, Hume C W, Chou D B, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J, Bergquist J C 2008 Science 319 1808

    [3]

    Mowat J R 1972 Phys. Rev. A 5 1059

    [4]

    Simon E, Laurent P, Clairon A 1998 Phys. Rev. A 57 426

    [5]

    Gao W, Ke X Z, Liu H F 2000 Acta Opt. Sin. 20 3 (in Chinese) [高卫, 柯熙政, 刘海峰 2000 光学学报 20 3]

    [6]

    Godone A, Calonico D, Levi F, Micalizio S, Calosso C 2005 Phys. Rev. A 71 063401

    [7]

    Angstmann E J, Dzuba V A, Flambaum V V 2006 Phys. Rev. A 74 023405

    [8]

    Beloy K, Safronova U I, Derevianko A 2006 Phys. Rev. Lett. 97 040801

    [9]

    Angstmann E J, Dzuba V A, Flambaum V 2006 Phys. Rev. Lett. 97 040802

    [10]

    Vanier J, Mandache C 2007 Appl. Phys. B 87 565

    [11]

    Farley J W, Wing W H 1981 Phys. Rev. A 23 2397

    [12]

    Safronova M S, Jiang D S, Safronova U I 2010 Phys. Rev. A 82 022510

    [13]

    Safronova U I 2010 Phys. Rev. A 82 022504

    [14]

    Safronova U I 2010 Phys. Rev. A 81 052506

    [15]

    Berengut J C, Flambaum V V, Lacroix J K 2009 Phys. Rev. A 80 064101

    [16]

    Safronova U I, Safronova M S 2009 Phys. Rev. A 79 022512

    [17]

    Porsev S G, Derevianko A 2006 Phys. Rev. A 74 020502

    [18]

    Rosenband T, Itano W M, Schmidt P O, Hume D B, Koelemeij J C J, Bergquist J C, Wineland D J 2006 Proceedings of the 20th EFTF, Braunschweig, Germany, 27-30, March 2006 pp289-292

    [19]

    Arora B, Safronova M S, Clark C 2007 Phys. Rev. A 76 064501

    [20]

    Safronova M S, Johnson W R 2007 Adv. at. Mol. Opt. Phys. 55 191

    [21]

    Hachisu H, Miyagishi K, Porsev S G, Derevianko A, Ovsiannikov V D, Palchikov V G, Takamoto M, Katori H 2008 Phys. Rev. Lett. 100 053001

    [22]

    Jiang D S, Arora B, Safronova M S, Clark C W 2009 J. Phys. B: Mol. Opt. Phys. 42 154020

    [23]

    Kallay M, Nataraj H S, Sahoo B K, Das B P, Visscher L 2011 Phys. Rev. A 83 030503

    [24]

    Folcke N, Bartlett R J 2004 J. Chem. Phys. 121 22

    [25]

    Zhou S X 1979 Quantum Mechanics (Beijing: Higher Education Press) p5 (in Chinese) [周世勋 1979 量子力学教程(北京:高等教育出版社) 第5页]

    [26]

    Bize S, Diddams S A, Tanaka U, Tanner C E, Oskay W H, Drullinger R E, Parker T E, Heavner T P, Jefferts S R, Hollberg L, Itano W M, Bergquist J C 2003 Phys. Rev. Lett. 90 150802

    [27]

    Itano W M 2000 J. Res. Natl. Inst. Stand. Technol. 105 829

    [28]

    Sansonetti C J, Joseph R 2001 Phys. Scripta 63 219

    [29]

    Becker T, Zanthier J V, Nevsky A Y, Schwedes C, Skvortsov M N, Walther H, Peik E 2001 Phys. Rev. A 63 051802

    [30]

    Hosaka K, Webster S A, Stannard A, Walton B R, Margolis H S, Gill P 2009 Phys. Rev. A 79 033403

    [31]

    Lorini L, Ashby N, Brusch A, Diddams S, Drullinger, Eason E, Fortier T, Hastings P, Heavner T, Hume D,Itano W, Jefferts S, Newbury N, Parker T, Rosenband T, Stalnaker J, Swann W, Wineland D, Bergquist J 2008 Eur. Phys. J. Special Topics 163 19

  • [1]

    Bender P L, Hall J L, Garstang R H, Pichanick F M J, Smith W W, Barger R L, West B J 1976 Bull. Am. Phys. Soc. 21 599

    [2]

    Rosenband T, Hume C W, Chou D B, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J, Bergquist J C 2008 Science 319 1808

    [3]

    Mowat J R 1972 Phys. Rev. A 5 1059

    [4]

    Simon E, Laurent P, Clairon A 1998 Phys. Rev. A 57 426

    [5]

    Gao W, Ke X Z, Liu H F 2000 Acta Opt. Sin. 20 3 (in Chinese) [高卫, 柯熙政, 刘海峰 2000 光学学报 20 3]

    [6]

    Godone A, Calonico D, Levi F, Micalizio S, Calosso C 2005 Phys. Rev. A 71 063401

    [7]

    Angstmann E J, Dzuba V A, Flambaum V V 2006 Phys. Rev. A 74 023405

    [8]

    Beloy K, Safronova U I, Derevianko A 2006 Phys. Rev. Lett. 97 040801

    [9]

    Angstmann E J, Dzuba V A, Flambaum V 2006 Phys. Rev. Lett. 97 040802

    [10]

    Vanier J, Mandache C 2007 Appl. Phys. B 87 565

    [11]

    Farley J W, Wing W H 1981 Phys. Rev. A 23 2397

    [12]

    Safronova M S, Jiang D S, Safronova U I 2010 Phys. Rev. A 82 022510

    [13]

    Safronova U I 2010 Phys. Rev. A 82 022504

    [14]

    Safronova U I 2010 Phys. Rev. A 81 052506

    [15]

    Berengut J C, Flambaum V V, Lacroix J K 2009 Phys. Rev. A 80 064101

    [16]

    Safronova U I, Safronova M S 2009 Phys. Rev. A 79 022512

    [17]

    Porsev S G, Derevianko A 2006 Phys. Rev. A 74 020502

    [18]

    Rosenband T, Itano W M, Schmidt P O, Hume D B, Koelemeij J C J, Bergquist J C, Wineland D J 2006 Proceedings of the 20th EFTF, Braunschweig, Germany, 27-30, March 2006 pp289-292

    [19]

    Arora B, Safronova M S, Clark C 2007 Phys. Rev. A 76 064501

    [20]

    Safronova M S, Johnson W R 2007 Adv. at. Mol. Opt. Phys. 55 191

    [21]

    Hachisu H, Miyagishi K, Porsev S G, Derevianko A, Ovsiannikov V D, Palchikov V G, Takamoto M, Katori H 2008 Phys. Rev. Lett. 100 053001

    [22]

    Jiang D S, Arora B, Safronova M S, Clark C W 2009 J. Phys. B: Mol. Opt. Phys. 42 154020

    [23]

    Kallay M, Nataraj H S, Sahoo B K, Das B P, Visscher L 2011 Phys. Rev. A 83 030503

    [24]

    Folcke N, Bartlett R J 2004 J. Chem. Phys. 121 22

    [25]

    Zhou S X 1979 Quantum Mechanics (Beijing: Higher Education Press) p5 (in Chinese) [周世勋 1979 量子力学教程(北京:高等教育出版社) 第5页]

    [26]

    Bize S, Diddams S A, Tanaka U, Tanner C E, Oskay W H, Drullinger R E, Parker T E, Heavner T P, Jefferts S R, Hollberg L, Itano W M, Bergquist J C 2003 Phys. Rev. Lett. 90 150802

    [27]

    Itano W M 2000 J. Res. Natl. Inst. Stand. Technol. 105 829

    [28]

    Sansonetti C J, Joseph R 2001 Phys. Scripta 63 219

    [29]

    Becker T, Zanthier J V, Nevsky A Y, Schwedes C, Skvortsov M N, Walther H, Peik E 2001 Phys. Rev. A 63 051802

    [30]

    Hosaka K, Webster S A, Stannard A, Walton B R, Margolis H S, Gill P 2009 Phys. Rev. A 79 033403

    [31]

    Lorini L, Ashby N, Brusch A, Diddams S, Drullinger, Eason E, Fortier T, Hastings P, Heavner T, Hume D,Itano W, Jefferts S, Newbury N, Parker T, Rosenband T, Stalnaker J, Swann W, Wineland D, Bergquist J 2008 Eur. Phys. J. Special Topics 163 19

  • [1] 陈泽锐, 刘光存, 俞振华. 谐振子势阱中双费米原子光钟的碰撞频移. 物理学报, 2021, 70(18): 180602. doi: 10.7498/aps.70.20210243
    [2] 卢晓同, 李婷, 孔德欢, 王叶兵, 常宏. 锶原子光晶格钟碰撞频移的测量. 物理学报, 2019, 68(23): 233401. doi: 10.7498/aps.68.20191147
    [3] 李婷, 卢晓同, 张强, 孔德欢, 王叶兵, 常宏. 锶原子光晶格钟黑体辐射频移评估. 物理学报, 2019, 68(9): 093701. doi: 10.7498/aps.68.20182294
    [4] 王倩, 魏荣, 王育竹. 原子喷泉频标:原理与发展. 物理学报, 2018, 67(16): 163202. doi: 10.7498/aps.67.20180540
    [5] 管桦, 黄垚, 李承斌, 高克林. 高准确度的钙离子光频标. 物理学报, 2018, 67(16): 164202. doi: 10.7498/aps.67.20180876
    [6] 王承伟, 赵全忠, 钱静, 黄媛媛, 王关德, 李阳博, 柏锋, 范文中, 李虹瑾. 黑体辐射法测量电介质内部被超短激光脉冲加工后的温度. 物理学报, 2016, 65(12): 125201. doi: 10.7498/aps.65.125201
    [7] 蒋建军, 李和平, 代立东, 胡海英, 赵超帅. 基于拉曼频移的白宝石压腔无压标系统高温高压实验标定. 物理学报, 2015, 64(14): 149101. doi: 10.7498/aps.64.149101
    [8] 周飞, 曹原, 雍海林, 彭承志, 王向斌. 基于电光效应的光子频移研究. 物理学报, 2014, 63(20): 204202. doi: 10.7498/aps.63.204202
    [9] 刘娜, 席丽霞, 李建平, 张晓光, 田凤, 周浩. 一种提高基于循环频移器的多载波光源光信噪比的方案. 物理学报, 2012, 61(17): 174209. doi: 10.7498/aps.61.174209
    [10] 张继涛, 吴学健, 李岩, 尉昊赟. 利用光频梳提高台阶高度测量准确度的方法. 物理学报, 2012, 61(10): 100601. doi: 10.7498/aps.61.100601
    [11] 冯志刚, 张好, 张临杰, 李昌勇, 赵建明, 贾锁堂. 超冷铯Rydberg原子寿命的测量. 物理学报, 2011, 60(7): 073202. doi: 10.7498/aps.60.073202
    [12] 杜润昌, 陈杰华, 刘朝阳, 顾思洪. CPT原子频标实验研究. 物理学报, 2009, 58(9): 6117-6121. doi: 10.7498/aps.58.6117
    [13] 文锦辉, 雷 亮, 焦中兴, 赖天树, 林位株. 两种光谱相位相干电场重构法对复杂脉冲测量的准确度比较. 物理学报, 2006, 55(4): 1883-1888. doi: 10.7498/aps.55.1883
    [14] 吴国华, 郭 弘, 刘明伟, 邓冬梅, 刘时雄. 尾波场与相对论效应对激光脉冲自相位调制及频移影响的比较研究. 物理学报, 2005, 54(7): 3213-3220. doi: 10.7498/aps.54.3213
    [15] 初鑫钊, 刘淑琴, 董太乾. 铷原子频标中的微波功率频移. 物理学报, 1994, 43(7): 1072-1076. doi: 10.7498/aps.43.1072
    [16] 崔树范, 麦振洪, 储晞. 固态硅中Si—H红外吸收谱的频移. 物理学报, 1985, 34(8): 1096-1101. doi: 10.7498/aps.34.1096
    [17] 董太乾. 用脉冲取样光检测方法减小Rb87频标的光频移. 物理学报, 1981, 30(1): 1-11. doi: 10.7498/aps.30.1
    [18] 傅恩生, 王裕民, 程兆谷, 窦爱荣. 10.6μm的CO2激光的电光频移. 物理学报, 1979, 28(5): 24-31. doi: 10.7498/aps.28.24
    [19] 第三届光谱分析经验交流会工作组. 高合金钢光谱分析准确度改进试验. 物理学报, 1959, 15(6): 285-296. doi: 10.7498/aps.15.285
    [20] 忻贤杰. 施密特电路的触发过程及它在测量窄脉冲振幅时的准确度. 物理学报, 1957, 13(6): 500-514. doi: 10.7498/aps.13.500
计量
  • 文章访问数:  6260
  • PDF下载量:  594
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-09-01
  • 修回日期:  2012-05-28
  • 刊出日期:  2012-05-05

/

返回文章
返回