搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电场辅助溶解法实现玻璃表面金纳米粒子的形貌控制

邹志宇 刘晓芳 曾敏 杨白 于荣海 姜鹤 唐瑞鹤 吴章奔

引用本文:
Citation:

电场辅助溶解法实现玻璃表面金纳米粒子的形貌控制

邹志宇, 刘晓芳, 曾敏, 杨白, 于荣海, 姜鹤, 唐瑞鹤, 吴章奔

Morphology control of gold nanoparticles on glass surface realized by electric field assisted dissolution method

Zou Zhi-Yu, Liu Xiao-Fang, Zeng Min, Yang Bai, Yu Rong-Hai, Jiang He, Tang Rui-He, Wu Zhang-Ben
PDF
导出引用
  • 贵金属纳米粒子由于其非常独特的光学特性和表面活性, 在光子学、 催化和生物标识等方面都有非常重要的应用. 采用离子溅射和后续热处理相结合的方法在玻璃表面形成了尺寸大约为6080 nm的单分散的球形金纳米粒子. 在适当的温度条件下, 采用步进式增加的强直流电场, 实现了金纳米粒子的电场辅助溶解过程. 在玻璃表面的不同颜色区域, 初始球形的金纳米粒子溶解成月蚀状形貌. 结合不同颜色区域内金纳米粒子的表面等离子体共振吸收性质和扫描电镜照片, 研究了实验条件对金纳米粒子性质的影响. 结合电场辅助溶解实验过程中的电流-电压特性, 分析了金纳米粒子在强直流电场辅助下溶解的物理过程: 金粒子中动出的电子向阳极的隧穿过程作为开始, 随后是金阳离子向玻璃基体中的传输过程和阴极提供的电子与带有正电荷的金粒子相结合的过程. 详细讨论了电场辅助溶解法实现金纳米粒子形貌控制的物理机制.
    Noble metal nanoparticles have potential applications in photonics, catalysis, and bio-labeling, owing to their much unique optical properties and surface activities. Monodisperse spherical Au nanoparticles with sizes in a range of about 60-80 nm are formed on the glass surfaces via ion sputtering and follow-up heat treatment. At an appropriate temperature, the electric field assisted dissolution process of Au nanoparticles is realized by the strong direct current electric field in step-like feature. In the different color areas of glass surface, it can be found that the original spherical Au nanoparticles are dissolved into the particles with the shape of a lunar eclipse. From surface plasmon resonance absorption properties and scattering electron microscopy images of Au nanoparticles in the different color areas, the influence of experimental condition on property of gold nanoparticle is demonstrated. From the current-voltage characteristics in electric field assisted dissolution experimental process, the physical process of Au nanoparticle dissolution under strong direct current electric field is analysed: the tunneling process of ejected electrons from Au particles to the anode starts, then followed by transfer process of Au cations to the glass matrix and the combination process of electrons from cathode with a positive charge Au particles. The physical mechanism of morphology control of Au nanoparticles realized by electric field assisted dissolution method is discussed in detail.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2010CB934602)、国家自然科学基金(批准号: 51171007, 51102006)和中央高校基本科研业务费专项资金 (批准号: YWF12LKGY004)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2010CB934602), the National Natural Science Foundation of China (Grant Nos. 51171007, 51102006), and the Fundamental Research Funds for the Central Universities of China (Grant No. YWF12LKGY004).
    [1]

    Engheta N 2007 Science 317 1698

    [2]

    Qu S L, Zhao C J, Gao Y C, Song Y L, Liu S T, Qiu J R, Zhu C S 2005 Acta Phys. Sin. 54 139 (in Chinese) [曲士良, 赵崇军, 高亚臣, 宋瑛林, 刘树田, 邱建荣, 朱从善 2005 物理学报 54 139]

    [3]

    Yuan H, Ma W H, Chen C C, Zhao J C, Liu J W, Zhu H Y, Gao X P 2007 Chem. Mater. 19 1592

    [4]

    Zhu B H, Wang F F, Zhang K, Ma G H, Guo L J, Qian S X 2007 Acta Phys. Sin. 56 4024 (in Chinese) [朱宝华, 王芳芳, 张琨, 马国宏, 郭立俊, 钱士雄 2007 物理学报 56 4024]

    [5]

    Shang C, Liu Z P 2011 J. Am. Chem. Soc. 133 9938

    [6]

    Nguyen D T, Kim D J, Kim K S 2011 Micron 42 207

    [7]

    Schmitt-Rink S, Miller D A B, Chemla D S 1987 Phys. Rev. B 35 8113

    [8]

    Hao P, Wu Y H, Zhang P 2010 Acta Phys. Sin. 59 6532 (in Chinese) [郝鹏, 吴一辉, 张平 2010 物理学报 59 6532]

    [9]

    Depairs O, Kazansky P G, Abdolvand A, Podipensky A, Seifert G, Graener H 2004 Appl. Phys. Lett. 85 872

    [10]

    Podipensky A, Abdolvand A, Seifert G, Depairs O, Kazansky P G 2004 J. Phys. Chem. B 108 17699

    [11]

    Deparis O, Kazansky P G, Podlipensky A, Abdolvand A, Selfert G 2006 J. Appl. Phys. 100 044318

    [12]

    Janicki V, Sancho-Parramon J, Peiró F, Arbiol J 2010 Appl. Phys. B 98 93

    [13]

    Lipovskii A A, Melehin V G, Petrikov V D 2006 Tech. Phys. Lett. 32 275

    [14]

    Baresna M, Kazansky P G, Deparis O, Carvalho I C S, Takahashi S, Zayats A 2010 Adv. Mater. 22 4368

    [15]

    Zou Z Y, Chen X J, Wang Q, Qu S L, Wang X Y 2008 J. Appl. Phys. 104 113113

    [16]

    Abdolvand A, Podipensky A, Matthias S, Syrowatka F, Gösele U, Seifert G, Graener H 2005 Adv. Mater. 17 2983

    [17]

    Lipovskii A A, Kuittinen M, Karvinen P, Leinonen K, Melehin V G, Zhurikhina V V, Svirko Y P 2008 Nanotechnology 19 415304

    [18]

    Link S, EI-Sayed M 1999 J. Phys. Chem. B 103 8410

    [19]

    Kelly K L, Coronado E, Zhao L L, Schatz G C 2003 J. Phys. Chem. B 107 668

    [20]

    Sheng P 1980 Phys. Rev. Lett. 45 60

    [21]

    Raffi M, Akhter J I, Hasan M M 2006 Chem. Phys. 99 405

    [22]

    Plech A, Cerna R, Kotaidis V, Hudert F, Bartels A, Dekorsy T 2007 Nano Lett. 7 1026

    [23]

    Oonishi T, Sato S, Yao H, Kimura K 2007 J. Appl. Phys. 101 114314

    [24]

    Sancho-Parramon J, Abdolvand A, Podipensky A, Seifert G, Graener H, Syrowatka F 2006 Appl. Opt. 45 8874

    [25]

    Snow A W, Wohltjen H 1998 Chem. Mater. 10 947

  • [1]

    Engheta N 2007 Science 317 1698

    [2]

    Qu S L, Zhao C J, Gao Y C, Song Y L, Liu S T, Qiu J R, Zhu C S 2005 Acta Phys. Sin. 54 139 (in Chinese) [曲士良, 赵崇军, 高亚臣, 宋瑛林, 刘树田, 邱建荣, 朱从善 2005 物理学报 54 139]

    [3]

    Yuan H, Ma W H, Chen C C, Zhao J C, Liu J W, Zhu H Y, Gao X P 2007 Chem. Mater. 19 1592

    [4]

    Zhu B H, Wang F F, Zhang K, Ma G H, Guo L J, Qian S X 2007 Acta Phys. Sin. 56 4024 (in Chinese) [朱宝华, 王芳芳, 张琨, 马国宏, 郭立俊, 钱士雄 2007 物理学报 56 4024]

    [5]

    Shang C, Liu Z P 2011 J. Am. Chem. Soc. 133 9938

    [6]

    Nguyen D T, Kim D J, Kim K S 2011 Micron 42 207

    [7]

    Schmitt-Rink S, Miller D A B, Chemla D S 1987 Phys. Rev. B 35 8113

    [8]

    Hao P, Wu Y H, Zhang P 2010 Acta Phys. Sin. 59 6532 (in Chinese) [郝鹏, 吴一辉, 张平 2010 物理学报 59 6532]

    [9]

    Depairs O, Kazansky P G, Abdolvand A, Podipensky A, Seifert G, Graener H 2004 Appl. Phys. Lett. 85 872

    [10]

    Podipensky A, Abdolvand A, Seifert G, Depairs O, Kazansky P G 2004 J. Phys. Chem. B 108 17699

    [11]

    Deparis O, Kazansky P G, Podlipensky A, Abdolvand A, Selfert G 2006 J. Appl. Phys. 100 044318

    [12]

    Janicki V, Sancho-Parramon J, Peiró F, Arbiol J 2010 Appl. Phys. B 98 93

    [13]

    Lipovskii A A, Melehin V G, Petrikov V D 2006 Tech. Phys. Lett. 32 275

    [14]

    Baresna M, Kazansky P G, Deparis O, Carvalho I C S, Takahashi S, Zayats A 2010 Adv. Mater. 22 4368

    [15]

    Zou Z Y, Chen X J, Wang Q, Qu S L, Wang X Y 2008 J. Appl. Phys. 104 113113

    [16]

    Abdolvand A, Podipensky A, Matthias S, Syrowatka F, Gösele U, Seifert G, Graener H 2005 Adv. Mater. 17 2983

    [17]

    Lipovskii A A, Kuittinen M, Karvinen P, Leinonen K, Melehin V G, Zhurikhina V V, Svirko Y P 2008 Nanotechnology 19 415304

    [18]

    Link S, EI-Sayed M 1999 J. Phys. Chem. B 103 8410

    [19]

    Kelly K L, Coronado E, Zhao L L, Schatz G C 2003 J. Phys. Chem. B 107 668

    [20]

    Sheng P 1980 Phys. Rev. Lett. 45 60

    [21]

    Raffi M, Akhter J I, Hasan M M 2006 Chem. Phys. 99 405

    [22]

    Plech A, Cerna R, Kotaidis V, Hudert F, Bartels A, Dekorsy T 2007 Nano Lett. 7 1026

    [23]

    Oonishi T, Sato S, Yao H, Kimura K 2007 J. Appl. Phys. 101 114314

    [24]

    Sancho-Parramon J, Abdolvand A, Podipensky A, Seifert G, Graener H, Syrowatka F 2006 Appl. Opt. 45 8874

    [25]

    Snow A W, Wohltjen H 1998 Chem. Mater. 10 947

  • [1] 沈艳丽, 史冰融, 吕浩, 张帅一, 王霞. 基于石墨烯的Au纳米颗粒增强染料随机激光. 物理学报, 2022, 71(3): 034206. doi: 10.7498/aps.71.20211613
    [2] 丁子平, 廖健飞, 曾泽楷. 基于表面等离子体共振的新型超宽带微结构光纤传感器研究. 物理学报, 2021, 70(7): 074207. doi: 10.7498/aps.70.20201477
    [3] 廖文英, 范万德, 李海鹏, 隋佳男, 曹学伟. 准晶体结构光纤表面等离子体共振传感器特性研究. 物理学报, 2015, 64(6): 064213. doi: 10.7498/aps.64.064213
    [4] 孙松松, 王红艳. 内嵌圆饼空心方形银纳米结构的光学性质. 物理学报, 2014, 63(10): 107803. doi: 10.7498/aps.63.107803
    [5] 张喆, 柳倩, 祁志美. 基于金银合金薄膜的近红外表面等离子体共振传感器研究. 物理学报, 2013, 62(6): 060703. doi: 10.7498/aps.62.060703
    [6] 冯李航, 曾捷, 梁大开, 张为公. 契形结构光纤表面等离子体共振传感器研究. 物理学报, 2013, 62(12): 124207. doi: 10.7498/aps.62.124207
    [7] 王丽师, 徐建萍, 石少波, 张晓松, 任志瑞, 葛林, 李岚. ZnS修饰对ZnO纳米棒:P3HT复合薄膜I-V性质的影响. 物理学报, 2013, 62(19): 196103. doi: 10.7498/aps.62.196103
    [8] 杨彦楠, 王新强, 卢励吾, 黄呈橙, 许福军, 沈波. InAlN材料表面态性质研究. 物理学报, 2013, 62(17): 177302. doi: 10.7498/aps.62.177302
    [9] 李娆, 朱亚彬, 狄月, 刘冬雪, 李冰, 钟韦. 有序金纳米颗粒阵列的制备及光吸收特性研究. 物理学报, 2013, 62(19): 198101. doi: 10.7498/aps.62.198101
    [10] 闫红丹, Peter Lemmens, Johannes Ahrens, Martin Bröring, Sven Burger, Winfried Daum, Gerhard Lilienkamp, Sandra Korte, Aidin Lak, Meinhard Schilling. 基于表面等离子体耦合的高密度金纳米线阵列. 物理学报, 2012, 61(23): 237105. doi: 10.7498/aps.61.237105
    [11] 钟明亮, 李山, 熊祖洪, 张中月. 十字形银纳米结构的表面等离子体光子学性质. 物理学报, 2012, 61(2): 027803. doi: 10.7498/aps.61.027803
    [12] 李金花, 王鹿霞. 光激发下分子纳米结中电荷输运的振动效应研究. 物理学报, 2011, 60(11): 117310. doi: 10.7498/aps.60.117310
    [13] 邱东江, 范文志, 翁圣, 吴惠桢, 王俊. 以表面等离子体为媒介的ZnO薄膜发光增强特性研究. 物理学报, 2011, 60(8): 087301. doi: 10.7498/aps.60.087301
    [14] 张元, 王鹿霞. 红外光激发作用下分子导电纳米结的非弹性电流研究. 物理学报, 2011, 60(4): 047304. doi: 10.7498/aps.60.047304
    [15] 郝鹏, 吴一辉, 张平. 纳米金表面修饰与表面等离子体共振传感器的相互作用研究. 物理学报, 2010, 59(9): 6532-6537. doi: 10.7498/aps.59.6532
    [16] 龙拥兵, 张剑, 汪国平. 基于表面等离子体激元共振的飞秒抽运探测技术研究. 物理学报, 2009, 58(11): 7722-7726. doi: 10.7498/aps.58.7722
    [17] 朱宝华, 王芳芳, 张 琨, 马国宏, 顾玉宗, 郭立俊, 钱士雄. Au:TiO2和Au:Al2O3纳米颗粒复合膜的线性和非线性光学特性. 物理学报, 2008, 57(5): 3085-3092. doi: 10.7498/aps.57.3085
    [18] 洪小刚, 徐文东, 李小刚, 赵成强, 唐晓东. 数值模拟探针诱导表面等离子体共振耦合纳米光刻. 物理学报, 2008, 57(10): 6643-6648. doi: 10.7498/aps.57.6643
    [19] 曲士良, 宋瑛林, 杜池敏, 王玉晓, 高亚臣, 刘树田, 李玉良, 朱道本. 基于富勒烯C60结构体系的金纳米粒子合成物光学非线性研究. 物理学报, 2001, 50(9): 1703-1708. doi: 10.7498/aps.50.1703
    [20] 侯士敏, 陶成钢, 刘虹雯, 赵兴钰, 刘惟敏, 薛增泉. 高定向石墨表面金纳米粒子和金纳米线的研究. 物理学报, 2001, 50(2): 223-226. doi: 10.7498/aps.50.223
计量
  • 文章访问数:  6170
  • PDF下载量:  867
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-29
  • 修回日期:  2012-05-28
  • 刊出日期:  2012-05-05

/

返回文章
返回