搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镁颗粒群非稳态着火过程数值模拟

杨晋朝 夏智勋 胡建新

引用本文:
Citation:

镁颗粒群非稳态着火过程数值模拟

杨晋朝, 夏智勋, 胡建新

Numerical studies of unsteady ignition of pulverized magnesium particle cloud

Yang Jin-Zhao, Xia Zhi-Xun, Hu Jian-Xin
PDF
导出引用
  • 建立了镁颗粒群着火的一维非稳态有限影响体模型, 数值模拟颗粒群中镁颗粒的着火过程. 研究表明, 当镁颗粒表面反应加剧之后,颗粒相温度急剧上升, 迅速达到着火, 而其周围气相的温升速率却远小于颗粒的温升速率; 在着火过程中气相温度只在颗粒表面附近升高比较明显, 整体温度升高不大. 分析了颗粒群内部参数和环境参数对镁颗粒群着火的影响. 随颗粒浓度的增加, 颗 粒群变得易于着火, 其着火时间变短, 但颗粒浓度增大到一定程度后, 继续增大该值将对颗粒群的着火起消极作用. 环境压力对颗粒群着火的影响比较小,在15 atm范围内颗粒群的着火性能基本不变. 气相中氧气浓度对颗粒群的着火性能影响也不显著, 但当氧气浓度过小时, 对着火过程的影响将大大增强.颗粒粒径、气相/颗粒相初温、辐射源温度对颗粒 群着火的影响巨大,小粒径、高温度促使颗粒群快速着火.数值模拟与文献中试验 结果的变化趋势相一致.
    A one-dimensional unsteady magnesium particle cloud ignition model with finite influencing sphere is established. The behavior of ignition of magnesium particle cloud is numerically simulated. The result shows that when the reaction is speeded up on the surface of magnesium particle, the temperature of the particle phase rises rapidly up to ignition temperature, while the surrounding air is much slower in temperature rising than particles; the gas temperature rising is unconspicuous in the whole sphere in the ignition process, albeit it is significant near the particle surface. The effects of the interior parameters and the environmental parameters on the ignition of the magnesium particle cloud are analyzed. With the increase of particle concentration, the particle cloud becomes easier to be ignited, and reduction in its ignition time delay can be seen. However, when the particle concentration has increased to some specific extent and its further increase will be adverse to the ignition of the particle cloud. The influence of the environmental pressure on the ignition of particle cloud is insignificant, and the ignition performance of the particle cloud almost keeps constant in a range of 1-5 atm. The oxygen concentration in the gas phase also has a weak effect on the ignition performance of particle cloud, but when the oxygen concentration is very low, the effect will significantly increase. The particle size, the initial temperature of the gas/particle and the radiant source have all great influences on the ignition performance of the particle cloud. Small particle and high temperature are helpful for speeding up the ignition process. The tendency obtained by numerical simulation coincides well with that of the experimental results from the literature.
    • 基金项目: 国家自然科学基金(批准号: 51006118)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51006118).
    [1]

    Shen H J, Xia Z X, Hu J X, Luo Z B 2007 J. Solid Rocket Technol. 30 474 (in Chinese) [申慧君, 夏智勋,胡建新,罗振兵 2007 固体火箭技术 30 474]

    [2]

    Liu X Z, Yu S Z, Li C J 2007 The Power System of Cruise Missile (Vol. 2) (Beijing: China Astronautics Publishing House) p284 (in Chinese) [刘兴洲,于守志,李存杰 2007 飞航导弹动力装置(下) (北京:中国宇航出版社)第284页]

    [3]

    Cen K F, Yao Q, Luo Z Y, Li X T 2002 Advanced Combustion Theory (Hangzhou: Zhejiang University Press) p329 (in Chinese) [岑可法, 姚强, 骆仲泱, 李绚天 2002 高等燃烧学 (杭州: 浙江大学出版社) 第329页]

    [4]

    Annamalai K, Ryan W 1992 Prog. Energy Combust. Sci. 18 221

    [5]

    Nagata H, Kudo I, Ken'ichi, Nakamura S, Takeshita Y 2002 Combust. Flame 129 392

    [6]

    Brzustowski T A, Twardus E M, Wojcicki S, Sobiesiak A 1979 AIAA J. 17 1234

    [7]

    Chiu H H, Kim H Y, Croke E J 1982 Nineteenth Symposium (International) on Combustion Haifa, Israel, August 8-13, 1982 p971

    [8]

    Bellan J, Cuffel R 1983 Combust. Flame 51 55

    [9]

    Zhang J, Zhang Z H 2004 Magnesium Alloy and Applications (Beijing: Chemical Industry Press) p8 (in Chinese) [张津, 章宗和 2004 镁合金及应用 (北京:化学工业出版社) 第8页]

    [10]

    Ezhovskii G K, Ozerov E S 1978 Combust. Explo. Shock Waves 13 716

    [11]

    Breiter A L, Mal'tsev V M, Popov E I 1978 Combustion. Explosio. Shock Waves 13 475

    [12]

    Fan J F, Yang G C, Zhou Y H, Xu J, Zhang Z F, Shi L K 2006 Foundry Technol. 27 605 (in Chinese) [樊建锋, 杨根仓, 周尧和, 徐骏, 张志峰, 石力开 2006 铸造技术 27 605]

    [13]

    Chen P, Zhang M X 2002 Special Casting and Nonferrous Alloys-2002 Year Die-Casting Special Issue 323 [陈萍, 张茂勋 2002 特种铸造及有色合金-2002年压铸专刊 323]

    [14]

    Elkotb M M, Salama N, Nassef I 1996 Twenty-Sixth Symposium (International) on Combustion Napoli, Italy, July 28-August 2, 1996 p1937

    [15]

    Annamalai K, Ryan W 1993 Prog. Energy Combust. Sci. 19 383

    [16]

    Roberts T A, Burton R L, Krier H 1993 Combust. Flame 92 125

    [17]

    Yang C H 2008 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)[杨成虎 2008 博士学位论文(杭州: 浙江大学)]

    [18]

    Cassel H M, Liebman I 1959 Combust. Flame 3 467

  • [1]

    Shen H J, Xia Z X, Hu J X, Luo Z B 2007 J. Solid Rocket Technol. 30 474 (in Chinese) [申慧君, 夏智勋,胡建新,罗振兵 2007 固体火箭技术 30 474]

    [2]

    Liu X Z, Yu S Z, Li C J 2007 The Power System of Cruise Missile (Vol. 2) (Beijing: China Astronautics Publishing House) p284 (in Chinese) [刘兴洲,于守志,李存杰 2007 飞航导弹动力装置(下) (北京:中国宇航出版社)第284页]

    [3]

    Cen K F, Yao Q, Luo Z Y, Li X T 2002 Advanced Combustion Theory (Hangzhou: Zhejiang University Press) p329 (in Chinese) [岑可法, 姚强, 骆仲泱, 李绚天 2002 高等燃烧学 (杭州: 浙江大学出版社) 第329页]

    [4]

    Annamalai K, Ryan W 1992 Prog. Energy Combust. Sci. 18 221

    [5]

    Nagata H, Kudo I, Ken'ichi, Nakamura S, Takeshita Y 2002 Combust. Flame 129 392

    [6]

    Brzustowski T A, Twardus E M, Wojcicki S, Sobiesiak A 1979 AIAA J. 17 1234

    [7]

    Chiu H H, Kim H Y, Croke E J 1982 Nineteenth Symposium (International) on Combustion Haifa, Israel, August 8-13, 1982 p971

    [8]

    Bellan J, Cuffel R 1983 Combust. Flame 51 55

    [9]

    Zhang J, Zhang Z H 2004 Magnesium Alloy and Applications (Beijing: Chemical Industry Press) p8 (in Chinese) [张津, 章宗和 2004 镁合金及应用 (北京:化学工业出版社) 第8页]

    [10]

    Ezhovskii G K, Ozerov E S 1978 Combust. Explo. Shock Waves 13 716

    [11]

    Breiter A L, Mal'tsev V M, Popov E I 1978 Combustion. Explosio. Shock Waves 13 475

    [12]

    Fan J F, Yang G C, Zhou Y H, Xu J, Zhang Z F, Shi L K 2006 Foundry Technol. 27 605 (in Chinese) [樊建锋, 杨根仓, 周尧和, 徐骏, 张志峰, 石力开 2006 铸造技术 27 605]

    [13]

    Chen P, Zhang M X 2002 Special Casting and Nonferrous Alloys-2002 Year Die-Casting Special Issue 323 [陈萍, 张茂勋 2002 特种铸造及有色合金-2002年压铸专刊 323]

    [14]

    Elkotb M M, Salama N, Nassef I 1996 Twenty-Sixth Symposium (International) on Combustion Napoli, Italy, July 28-August 2, 1996 p1937

    [15]

    Annamalai K, Ryan W 1993 Prog. Energy Combust. Sci. 19 383

    [16]

    Roberts T A, Burton R L, Krier H 1993 Combust. Flame 92 125

    [17]

    Yang C H 2008 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)[杨成虎 2008 博士学位论文(杭州: 浙江大学)]

    [18]

    Cassel H M, Liebman I 1959 Combust. Flame 3 467

  • [1] 白宇, 张振方, 杨海滨, 蔡力, 郁殿龙. 基于非对称吸声器的发动机声学超表面声衬. 物理学报, 2023, 72(5): 054301. doi: 10.7498/aps.72.20222011
    [2] 刘龙, 夏智勋, 黄利亚, 马立坤, 陈斌斌. 镁颗粒-空气混合物一维非稳态爆震波特性数值模拟研究. 物理学报, 2020, 69(19): 194701. doi: 10.7498/aps.69.20200549
    [3] 杨建刚, 胡春波, 朱小飞, 李悦, 胡旭, 邓哲. 粉末颗粒气力加注特性实验研究. 物理学报, 2020, 69(4): 048102. doi: 10.7498/aps.69.20191273
    [4] 刘龙, 夏智勋, 黄利亚, 马立坤, 那旭东. 镁颗粒-空气混合物一维稳态爆震波特性数值模拟. 物理学报, 2019, 68(24): 244701. doi: 10.7498/aps.68.20190974
    [5] 王悦, 李伟锋, 施浙杭, 刘海峰, 王辅臣. 稠密颗粒射流倾斜撞击颗粒膜特征. 物理学报, 2018, 67(10): 104501. doi: 10.7498/aps.67.20172092
    [6] 蒋亦民, 刘佑. 颗粒-颗粒接触力的热力学模型. 物理学报, 2018, 67(4): 044502. doi: 10.7498/aps.67.20171441
    [7] 赵信文, 李欣竹, 张航, 王学军, 宋萍, 张汉钊, 康强, 黄金, 吴强. 冲击波作用下微米尺度金属颗粒群的动力学行为. 物理学报, 2017, 66(10): 104701. doi: 10.7498/aps.66.104701
    [8] 陈福振, 强洪夫, 苗刚, 高巍然. 燃料抛撒成雾及其燃烧爆炸的光滑离散颗粒流体动力学方法数值模拟研究. 物理学报, 2015, 64(11): 110202. doi: 10.7498/aps.64.110202
    [9] 孙其诚, 刘传奇, 周公旦. 颗粒介质弹性的弛豫. 物理学报, 2015, 64(23): 236101. doi: 10.7498/aps.64.236101
    [10] 杨辰, 房超, 张建, 曹建主. 球床高温气冷堆燃料颗粒中放射性核素的累积释放份额研究. 物理学报, 2014, 63(3): 032802. doi: 10.7498/aps.63.032802
    [11] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率. 物理学报, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [12] 朱利, 刘尚合, 郑会志, 魏明, 胡小锋, 索罗金·安德烈. 航空发动机喷流起电机理建模与试验研究. 物理学报, 2013, 62(22): 225201. doi: 10.7498/aps.62.225201
    [13] 方传波, 夏智勋, 肖云雷, 胡建新, 刘道平. 考虑Stefan影响的单颗粒硼着火过程研究. 物理学报, 2013, 62(16): 164702. doi: 10.7498/aps.62.164702
    [14] 杨晋朝, 夏智勋, 胡建新. 镁颗粒群着火和燃烧过程数值模拟. 物理学报, 2013, 62(7): 074701. doi: 10.7498/aps.62.074701
    [15] 钱祖文. 颗粒介质中的粘滞系数. 物理学报, 2012, 61(13): 134301. doi: 10.7498/aps.61.134301
    [16] 房超, 刘马林. 包覆燃料颗粒碳化硅层的Raman光谱研究. 物理学报, 2012, 61(9): 097802. doi: 10.7498/aps.61.097802
    [17] 杨娟, 卞保民, 彭刚, 闫振纲, 李振华. 悬浮颗粒散射脉冲信号群的统计分形特性. 物理学报, 2010, 59(11): 7713-7718. doi: 10.7498/aps.59.7713
    [18] 杨义涛, 张崇宏, 周丽宏, 李炳生, 张丽卿. 惰性气体离子注入铝镁尖晶石合成金属纳米颗粒的探索. 物理学报, 2009, 58(1): 399-403. doi: 10.7498/aps.58.399
    [19] 戴兵, 罗向东, 王亚伟. 椭圆截面非球形颗粒群的多重光散射. 物理学报, 2009, 58(6): 3864-3869. doi: 10.7498/aps.58.3864
    [20] 都有为, 徐明祥, 吴坚, 史莹冰, 陆怀先, 薛荣华. 镍超细微颗粒的磁性. 物理学报, 1992, 41(1): 149-154. doi: 10.7498/aps.41.149
计量
  • 文章访问数:  4932
  • PDF下载量:  428
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-03
  • 修回日期:  2012-04-26
  • 刊出日期:  2012-08-05

/

返回文章
返回