搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第一性原理计算研究黑磷嵌锂态的动力学性能

曾祥明 鄢慧君 欧阳楚英

引用本文:
Citation:

第一性原理计算研究黑磷嵌锂态的动力学性能

曾祥明, 鄢慧君, 欧阳楚英

First principles investigation of dynamic performance in the process of lithium intercalation into black phosphorus

Zeng Xiang-Ming, Yan Hui-Jun, Ouyang Chu-Ying
PDF
导出引用
  • 采用基于密度泛函理论的第一性原理方法对锂离子电池负极材料黑磷在嵌锂过程中的产物LiP5, Li3P7以及LiP的晶体结构与电子结构进行了研究与分析. 通过计算这几种材料的电子结构, 发现黑磷嵌锂后的这几种相均为半导体能带结构, 其带隙均比黑磷嵌锂前的带隙大, 表明黑磷嵌锂后的电子电导性能降低了. 利用弹性能带方法模拟了Li离子在LiP5, Li3P7和LiP材料中的扩散, 从理论上得到了Li离子的扩散势垒,并与其他电极材料进行了比较, 发现Li离子在各种嵌锂态的材料中都能够比较快速的扩散. 计算结果表明, Li在LiP5中的扩散系数大约为10-4 cm2/s, 扩散通道是一维的; Li在Li3P7中的扩散系数为10-7—10-6 cm2/s, 扩散通道是三维的; Li在LiP中的扩散系数为10-8—10-5 cm2/s, 扩散通道是三维的.
    Electronic and atomic structures of LiP5, Li3P7 and LiP, which are formed in the process of lithium intercalation into black phosphorus, are systematically studied and analyzed using first-principles ultrasoft pseudopotential method based on the density functional theory (DFT). By caculating the electronic strucrures of these products, we find that the three products are all of semiconductor band structure, of which band gaps are larger than those of black phosphorus, indicating that the electronic conductivity of the black phosphorus is reduced after lithium has been intercalated into it. We simulate the diffusion of lithium ions in the LiP5, Li3P7 and LiP materials using nudged elastic band (NEB) method, and the diffusion activation energy of lithium ions is obtained firstly through the theoretical calculation. Compare with the results of other electrode materials, our results show that the migration energy barriers of lithium ions in LiP5, Li3P7 and LiP are all low. The diffusion coefficient of lithium ions in LiP5 is about 10-4 m2/s and the diffusion channel is one-dimensional. The diffusion coefficient of lithium ions in Li3P7 is approximately 10-7-10-6 cm2/s and the diffusion channel is three-dimensional. The diffusion coefficient of lithium ions in LiP is approximately 10-8-10-5 cm2/s and the diffusion channel is three-dimensional.
    • 基金项目: 国家自然科学基金(批准号: 11064004)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11064004).
    [1]

    Lu Q, Hu X G, Chen H Mao Y Z 2005 Chinese Patent ZL-03153105.9 [2005-07-06]

    [2]

    Motohiro N, Akitoshi H 2010 The 15th international Meeting on Lithium Batteries- IMLB Montréal, Canada, June 27 - July 3, 2010 248

    [3]

    Park C M, Sohn H J 2007 Adv. Mater. 19 2465

    [4]

    Tom N, Marcel K, Thorben P 2008 J. Solid-State Chem. 181 1707

    [5]

    Park C M 2008 US Patent 11 835 710 [2008-02-14]

    [6]

    Du Y L, Ouyang C Y, Shi S Q, Lei M S 2010 J. Appl. Phys. 107 093718

    [7]

    Ouyang C Y, Zeng X M, Sljivancanin Z, Baldereschi A 2010 J. Phys. Chem. C 114 4756

    [8]

    Zhong Z Y, Nie Z X, Du Y L, Ouyang C Y, Shi S Q, Lei M S 2009 Chin. Phys. 18 2492

    [9]

    Liu C H, Ouyang C Y, Ji Y H 2011 Acta Phys. Sin. 60 077103 (in Chinese) [刘春华, 欧阳楚英, 嵇英华 2011 物理学报 60 077103]

    [10]

    Ouyang C Y, Wang D Y, Shi S Q, Wang Z X, Li H, Huang X J, Chen L Q 2006 Chin. Phys. Lett. 23 61

    [11]

    Jorn S G, Sylvia K 1999 J. Solid-State Chem. 147 341

    [12]

    Honle W, Manriquez V, Meyer T, Schnering H G 1983 Z. Kristallogr 162 104

    [13]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [14]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 10304

    [15]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [16]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [17]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [18]

    Perdew J P, Chevary J A 1992 Phys. Rev. B 46: 6671

    [19]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [20]

    Henkelman G, Uberuaga B P, Jonsson H 2000 J. Chem. Phys. 113 22

    [21]

    Sheppard D, Terrell R, Henkelman G 2008 J. Chem. Phys. 128, 134106

    [22]

    Jorn S G, Sylvia K 1999 J. Solid-State Chem. 147 341

    [23]

    Persson K, Sethuraman V A, Hardwick L J, Hinuma Y, Meng Y S, Van V A, Srinivasan V, Kostecki R, Ceder G 2010 J. Phys. Chem. Lett. 1 1176

    [24]

    Van V A, Ceder G 2000 Electrochem. Solid-State Lett. 3 301

    [25]

    Ouyang C Y, Shi S Q, Wang Z X, Huang X J, Chen L Q 2004 Phys. Rev. B 69 104303

    [26]

    Morgan D, Van V A, Ceder G 2004 Electrochem. Solid-State Lett. 7 A30

    [27]

    Du Y A, Holzwarth N A W 2007 Phys. Rev. B 76 174302

    [28]

    Weppner W, Huggins R A 1977 J. Electrochem. Soc. 124 1569

  • [1]

    Lu Q, Hu X G, Chen H Mao Y Z 2005 Chinese Patent ZL-03153105.9 [2005-07-06]

    [2]

    Motohiro N, Akitoshi H 2010 The 15th international Meeting on Lithium Batteries- IMLB Montréal, Canada, June 27 - July 3, 2010 248

    [3]

    Park C M, Sohn H J 2007 Adv. Mater. 19 2465

    [4]

    Tom N, Marcel K, Thorben P 2008 J. Solid-State Chem. 181 1707

    [5]

    Park C M 2008 US Patent 11 835 710 [2008-02-14]

    [6]

    Du Y L, Ouyang C Y, Shi S Q, Lei M S 2010 J. Appl. Phys. 107 093718

    [7]

    Ouyang C Y, Zeng X M, Sljivancanin Z, Baldereschi A 2010 J. Phys. Chem. C 114 4756

    [8]

    Zhong Z Y, Nie Z X, Du Y L, Ouyang C Y, Shi S Q, Lei M S 2009 Chin. Phys. 18 2492

    [9]

    Liu C H, Ouyang C Y, Ji Y H 2011 Acta Phys. Sin. 60 077103 (in Chinese) [刘春华, 欧阳楚英, 嵇英华 2011 物理学报 60 077103]

    [10]

    Ouyang C Y, Wang D Y, Shi S Q, Wang Z X, Li H, Huang X J, Chen L Q 2006 Chin. Phys. Lett. 23 61

    [11]

    Jorn S G, Sylvia K 1999 J. Solid-State Chem. 147 341

    [12]

    Honle W, Manriquez V, Meyer T, Schnering H G 1983 Z. Kristallogr 162 104

    [13]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [14]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 10304

    [15]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [16]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [17]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [18]

    Perdew J P, Chevary J A 1992 Phys. Rev. B 46: 6671

    [19]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [20]

    Henkelman G, Uberuaga B P, Jonsson H 2000 J. Chem. Phys. 113 22

    [21]

    Sheppard D, Terrell R, Henkelman G 2008 J. Chem. Phys. 128, 134106

    [22]

    Jorn S G, Sylvia K 1999 J. Solid-State Chem. 147 341

    [23]

    Persson K, Sethuraman V A, Hardwick L J, Hinuma Y, Meng Y S, Van V A, Srinivasan V, Kostecki R, Ceder G 2010 J. Phys. Chem. Lett. 1 1176

    [24]

    Van V A, Ceder G 2000 Electrochem. Solid-State Lett. 3 301

    [25]

    Ouyang C Y, Shi S Q, Wang Z X, Huang X J, Chen L Q 2004 Phys. Rev. B 69 104303

    [26]

    Morgan D, Van V A, Ceder G 2004 Electrochem. Solid-State Lett. 7 A30

    [27]

    Du Y A, Holzwarth N A W 2007 Phys. Rev. B 76 174302

    [28]

    Weppner W, Huggins R A 1977 J. Electrochem. Soc. 124 1569

  • [1] 谢奕展, 程夕明. 一种求解锂离子电池单粒子模型液相扩散方程的新方法. 物理学报, 2022, 71(4): 048201. doi: 10.7498/aps.71.20211619
    [2] 丁燕, 钟粤华, 郭俊青, 卢毅, 罗昊宇, 沈云, 邓晓华. 黑磷各向异性拉曼光谱表征及电学特性. 物理学报, 2021, 70(3): 037801. doi: 10.7498/aps.70.20201271
    [3] 黄申洋, 张国伟, 汪凡洁, 雷雨晨, 晏湖根. 二维黑磷的光学性质. 物理学报, 2021, 70(2): 027802. doi: 10.7498/aps.70.20201497
    [4] 李涛, 程夕明, 胡晨华. 锂离子电池电化学降阶模型性能对比. 物理学报, 2021, 70(13): 138801. doi: 10.7498/aps.70.20201894
    [5] 谢奕展, 程夕明. 一种求解锂离子电池单粒子模型液相扩散方程的新方法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211619
    [6] 孟达, 从鑫, 冷宇辰, 林妙玲, 王佳宏, 喻彬璐, 刘雪璐, 喻学锋, 谭平恒. 黑磷的多声子共振拉曼散射. 物理学报, 2020, 69(16): 167803. doi: 10.7498/aps.69.20200696
    [7] 张忠强, 刘汉伦, 范晋伟, 丁建宁, 程广贵. 黑磷纳米通道内压力驱动流体流动特性. 物理学报, 2019, 68(17): 170202. doi: 10.7498/aps.68.20190531
    [8] 曾建邦, 郭雪莹, 刘立超, 沈祖英, 单丰武, 罗玉峰. 基于电化学-热耦合模型研究隔膜孔隙结构对锂离子电池性能的影响机制. 物理学报, 2019, 68(1): 018201. doi: 10.7498/aps.68.20181726
    [9] 彭颖吒, 李泳, 郑百林, 张锴, 徐咏川. 考虑介质膨胀速率的锂离子电池管状电极中扩散诱导应力及轴向支反力分析. 物理学报, 2018, 67(7): 070203. doi: 10.7498/aps.67.20172288
    [10] 宋旭, 陆勇俊, 石明亮, 赵翔, 王峰会. 集流体塑性变形对锂离子电池双层电极中锂扩散和应力的影响. 物理学报, 2018, 67(14): 140201. doi: 10.7498/aps.67.20180148
    [11] 庞辉. 基于电化学模型的锂离子电池多尺度建模及其简化方法. 物理学报, 2017, 66(23): 238801. doi: 10.7498/aps.66.238801
    [12] 彭颖吒, 张锴, 郑百林, 李泳. 广义平面应变锂离子电池柱形梯度材料颗粒电极中扩散诱导应力分析. 物理学报, 2016, 65(10): 100201. doi: 10.7498/aps.65.100201
    [13] 李娟, 汝强, 胡社军, 郭凌云. 锂离子电池SnSb/C复合负极材料的热碳还原法制备及电化学性能研究. 物理学报, 2014, 63(16): 168201. doi: 10.7498/aps.63.168201
    [14] 李娟, 汝强, 孙大伟, 张贝贝, 胡社军, 侯贤华. 锂离子电池SnSb/MCMB核壳结构负极材料嵌锂性能研究. 物理学报, 2013, 62(9): 098201. doi: 10.7498/aps.62.098201
    [15] 唐彦丽, 李融武. 二聚物在Cu表面上的扩散和解离研究. 物理学报, 2012, 61(18): 186802. doi: 10.7498/aps.61.186802
    [16] 黄乐旭, 陈远富, 李萍剑, 黄然, 贺加瑞, 王泽高, 郝昕, 刘竞博, 张万里, 李言荣. 氧化石墨制备温度对石墨烯结构及其锂离子电池性能的影响. 物理学报, 2012, 61(15): 156103. doi: 10.7498/aps.61.156103
    [17] 刘相, 谢凯, 郑春满, 王军. 不同气氛下裂解含苯环聚硅氧烷制备锂离子电池Si-O-C复合负极材料的电池性能研究. 物理学报, 2011, 60(11): 118202. doi: 10.7498/aps.60.118202
    [18] 彭薇, 岳敏, 梁奇, 胡社军, 侯贤华. 锂离子电池LiMn1-xFexPO4(0x<1)正极材料的制备及性能研究. 物理学报, 2011, 60(3): 038202. doi: 10.7498/aps.60.038202
    [19] 侯贤华, 余洪文, 胡社军. 锂离子电池Sn-Al薄膜电极的制备及电化学性能研究. 物理学报, 2010, 59(11): 8226-8230. doi: 10.7498/aps.59.8226
    [20] 侯贤华, 胡社军, 石璐. 锂离子电池Sn-Ti合金负极材料的制备及性能研究. 物理学报, 2010, 59(3): 2109-2113. doi: 10.7498/aps.59.2109
计量
  • 文章访问数:  11426
  • PDF下载量:  1938
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-02-16
  • 修回日期:  2012-07-11
  • 刊出日期:  2012-12-05

/

返回文章
返回