搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电极电压对碳纳米管阴极电离规性能影响的数值模拟

张虎忠 李得天 董长昆 成永军 肖玉华

引用本文:
Citation:

电极电压对碳纳米管阴极电离规性能影响的数值模拟

张虎忠, 李得天, 董长昆, 成永军, 肖玉华

Numerical simulation of electrode potential influence on the performance of ionization gauge with carbon nanotubes cathode

Zhang Hu-Zhong, Li De-Tian, Dong Chang-Kun, Cheng Yong-Jun, Xiao Yu-Hua
PDF
导出引用
  • 本文基于IE514分离规结构, 建立了碳纳米管阴极电离规物理模型, 根据电离规标准方程, 利用离子光学模拟软件SIMION 8.0分别研究了电极电压对灵敏度和Igrid/Ie的影响. 结果表明, 随着阳极/门极电压比值增大(Vgrid/Vgate), Igrid/Ie也将增大, 然而, 当阳极电压增大时, 会导致灵敏度降低, 进而影响真空测量下限的延伸; 该模拟结果与相关文献报道的实验结果符合性很好. 因此, 选择合适的电极电压, 将有利于提高灵敏度, 增大阳极电流, 进一步延伸真空测量下限. 本文所采用的数值模拟方法可推广应用于各种新型碳纳米管阴极极高真空电离规的研发和理论分析中, 为解决极高真空测量难题提供了有效的研究途径.
    Theoretical studies of electrodes potential influence on the sensitivity and ratio of anode current and emission current (Igrid/Ie) will be beneficial for providing theoretical basis and experimental instruction in the research of ionization gauge with carbon nanotubes cathode. In this paper, based on the structure of IE514 extractor gauge, the model of carbon nanotube ionization gauge is built by ion optic simulation software SIMION 8.0. And the influence of electrode potential on the sensitivity and Igrid/Ie is discussed. Results show that with increasing ratio between anode voltage and gate voltage (Vgrid/Vgate), Igrid/Ie increases, while the sensitivity of the gauge decreases with the increase in anode voltage, which would further affect the extension of vacuum measurement lower limit. Moreover, the simulation results are in good agreement with the experimental data reported. Consequently, it is very important to improve the sensitivity, anode current and extension of measurement lower limit to set up an appropriate electrode voltage. In addition, the method adopted in this paper can be extended to the research and development of new-styles of extremely high vacuum ionization gauge of carbon nanotube cathode, which could provide an effective method to resolve the problem of extremely high vacuum measurement.
    • 基金项目: 国家杰出青年科学基金 (批准号: 61125101) 资助的课题.
    • Funds: Project supported by the National Science Fund for Distinguished Young Scholars (Grant No. 61125101).
    [1]

    St. Wilfert, Chr. Edelmann 2012 Vacuum 86 556

    [2]

    Cai M, Li D T, Cheng Y J, Chang P 2011 J. Vac. Sci. Technol 31 732 (in Chinese) [蔡敏, 李得天, 成永军, 常鹏 2011 真空科学与技术学报 31 732]

    [3]

    Li D T, Cheng Y J, Feng Y, Cai M 2012 Shanghai Measurement and Testing 39 2 (in Chinese) [李得天, 成永军, 冯焱, 蔡敏 2012 上海计量测试 39 2]

    [4]

    Dong C K, Myneni G R 2004 Appl. Phys. Lett. 84 5443

    [5]

    Dong C K 2003 Ph. D. Dissertation (Virginia: Old Dominion University)

    [6]

    Sheng L M, Liu P, Wei Y, Liu L, Qi J, Fan S S 2005 Diam. & Rela. Mater. 14 1695

    [7]

    In-Mook Choi, Sam-Yong Woo 2005 Appl. Phys. Lett. 87 173104

    [8]

    Huang J X, Chen J, Deng S Z, Xu N S 2007 J. Vac. Sci. Technol. B 25 651

    [9]

    Alexanderov S Y, Arkhipov A V, Mishin M V, Sominski G G 2007 Surf Interf Anal. 39 146

    [10]

    Xiao L, Qian L, Wei Y, Liu L, Fan S S 2008 J. Vac. Sci. Technol. A 26 1

    [11]

    Hirofumi-Suto, Shunjiro Fujii, Kumiko Yoshihara, Kazuhiro Ishida, Yuya Tanaka, Shin-ichi Honda, Mitsuhiro Katayama 2008 Jpn J. Appl Phys. 47 2032

    [12]

    Knapp W, Scheleussner D, West M 2008 J. Phys.: Conf Ser. 100 092007

    [13]

    Yang Y C, Qian L, Tang J, Liu L, Fan S S 2008 Appl. Phys. Lett. 92 153105

    [14]

    Liu H R, Hitoshi Nakahara, Sashiro Uemura, Yachachi Saito 2009 Vaccum 84 713

    [15]

    Dahl D A, SMION 3D Version 8.0. Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID 83415 2008

    [16]

    Lotz W 1967 Astrophys. J. Suppl. 14 207

    [17]

    Tate J T, Smith P T 1932 Phys. Rev. 39 270

    [18]

    Yuan X S, Zhang Y, Sun L M, Li X Y, Deng S Z, Xu N S, Yan Y 2012 Acta Phys. Sin. 61 21610 1 (in Chinese) [袁学松, 张宇, 孙利民, 黎晓云, 邓少芝, 许宁生, 鄢扬 2012 物理学报 61 216101]

  • [1]

    St. Wilfert, Chr. Edelmann 2012 Vacuum 86 556

    [2]

    Cai M, Li D T, Cheng Y J, Chang P 2011 J. Vac. Sci. Technol 31 732 (in Chinese) [蔡敏, 李得天, 成永军, 常鹏 2011 真空科学与技术学报 31 732]

    [3]

    Li D T, Cheng Y J, Feng Y, Cai M 2012 Shanghai Measurement and Testing 39 2 (in Chinese) [李得天, 成永军, 冯焱, 蔡敏 2012 上海计量测试 39 2]

    [4]

    Dong C K, Myneni G R 2004 Appl. Phys. Lett. 84 5443

    [5]

    Dong C K 2003 Ph. D. Dissertation (Virginia: Old Dominion University)

    [6]

    Sheng L M, Liu P, Wei Y, Liu L, Qi J, Fan S S 2005 Diam. & Rela. Mater. 14 1695

    [7]

    In-Mook Choi, Sam-Yong Woo 2005 Appl. Phys. Lett. 87 173104

    [8]

    Huang J X, Chen J, Deng S Z, Xu N S 2007 J. Vac. Sci. Technol. B 25 651

    [9]

    Alexanderov S Y, Arkhipov A V, Mishin M V, Sominski G G 2007 Surf Interf Anal. 39 146

    [10]

    Xiao L, Qian L, Wei Y, Liu L, Fan S S 2008 J. Vac. Sci. Technol. A 26 1

    [11]

    Hirofumi-Suto, Shunjiro Fujii, Kumiko Yoshihara, Kazuhiro Ishida, Yuya Tanaka, Shin-ichi Honda, Mitsuhiro Katayama 2008 Jpn J. Appl Phys. 47 2032

    [12]

    Knapp W, Scheleussner D, West M 2008 J. Phys.: Conf Ser. 100 092007

    [13]

    Yang Y C, Qian L, Tang J, Liu L, Fan S S 2008 Appl. Phys. Lett. 92 153105

    [14]

    Liu H R, Hitoshi Nakahara, Sashiro Uemura, Yachachi Saito 2009 Vaccum 84 713

    [15]

    Dahl D A, SMION 3D Version 8.0. Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID 83415 2008

    [16]

    Lotz W 1967 Astrophys. J. Suppl. 14 207

    [17]

    Tate J T, Smith P T 1932 Phys. Rev. 39 270

    [18]

    Yuan X S, Zhang Y, Sun L M, Li X Y, Deng S Z, Xu N S, Yan Y 2012 Acta Phys. Sin. 61 21610 1 (in Chinese) [袁学松, 张宇, 孙利民, 黎晓云, 邓少芝, 许宁生, 鄢扬 2012 物理学报 61 216101]

  • [1] 寇科, 王错, 王晛, 连天虹, 焦明星, 樊毓臻. 线性调频激光回馈粒度探测灵敏度提升方法. 物理学报, 2023, 72(16): 169501. doi: 10.7498/aps.72.20230569
    [2] 陈大勇, 缪培贤, 史彦超, 崔敬忠, 刘志栋, 陈江, 王宽. 抽运-检测型原子磁力仪对电流源噪声的测量. 物理学报, 2022, 71(2): 024202. doi: 10.7498/aps.71.20211122
    [3] 陈大勇, 缪培贤. 抽运-检测型原子磁力仪对电流源噪声的测量. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211122
    [4] 刘旭阳, 张贺秋, 李冰冰, 刘俊, 薛东阳, 王恒山, 梁红伟, 夏晓川. AlGaN/GaN高电子迁移率晶体管温度传感器特性. 物理学报, 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [5] 张文杰, 刘郁松, 郭浩, 韩星程, 蔡安江, 李圣昆, 赵鹏飞, 刘俊. 双螺线圈射频共振结构增强硅空位自旋传感灵敏度方法. 物理学报, 2020, 69(23): 234206. doi: 10.7498/aps.69.20200765
    [6] 左小杰, 孙颍榕, 闫智辉, 贾晓军. 高灵敏度的量子迈克耳孙干涉仪. 物理学报, 2018, 67(13): 134202. doi: 10.7498/aps.67.20172563
    [7] 胡泽华, 叶涛, 刘雄国, 王佳. 抽样法与灵敏度法keff不确定度量化. 物理学报, 2017, 66(1): 012801. doi: 10.7498/aps.66.012801
    [8] 史生才, 李婧, 张文, 缪巍. 超高灵敏度太赫兹超导探测器. 物理学报, 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [9] 王俊平, 戚苏阳, 刘士钢. 基于版图优化的综合灵敏度模型. 物理学报, 2014, 63(12): 128503. doi: 10.7498/aps.63.128503
    [10] 江莺, 梁大开, 曾捷, 倪晓宇. 监测点波长对高双折射光纤环镜轴向应变灵敏度的影响. 物理学报, 2013, 62(6): 064216. doi: 10.7498/aps.62.064216
    [11] 田会娟, 牛萍娟. 基于delta-P1近似模型的空间分辨漫反射一阶散射参量灵敏度研究. 物理学报, 2013, 62(3): 034201. doi: 10.7498/aps.62.034201
    [12] 徐晋, 谢品华, 司福祺, 李昂, 周海金, 吴丰成, 王杨, 刘建国, 刘文清. 基于机载平台的NO2 垂直廓线反演灵敏度研究. 物理学报, 2013, 62(10): 104214. doi: 10.7498/aps.62.104214
    [13] 宋顾周, 马继明, 王奎禄, 周鸣. 厚针孔射线成像品质因数的研究. 物理学报, 2012, 61(10): 102902. doi: 10.7498/aps.61.102902
    [14] 陈国云, 辛勇, 黄福成, 魏志勇, 雷升杰, 黄三玻, 朱立, 赵经武, 马加一. 用于反应堆中子/ 射线混合场测量的涂硼电离室性能. 物理学报, 2012, 61(8): 082901. doi: 10.7498/aps.61.082901
    [15] 王光强, 王建国, 童长江, 李小泽, 王雪锋. 高功率太赫兹脉冲半导体探测器的分析与设计. 物理学报, 2011, 60(3): 030702. doi: 10.7498/aps.60.030702
    [16] 龚元, 郭宇, 饶云江, 赵天, 吴宇, 冉曾令. 光纤法布里-珀罗复合结构折射率传感器的灵敏度分析. 物理学报, 2011, 60(6): 064202. doi: 10.7498/aps.60.064202
    [17] 侯建平, 宁韬, 盖双龙, 李鹏, 郝建苹, 赵建林. 基于光子晶体光纤模间干涉的折射率测量灵敏度分析. 物理学报, 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [18] 任利春, 周林, 李润兵, 刘敏, 王谨, 詹明生. 不同序列拉曼光脉冲对原子重力仪灵敏度的影响. 物理学报, 2009, 58(12): 8230-8235. doi: 10.7498/aps.58.8230
    [19] 张显鹏, 欧阳晓平, 张忠兵, 田 耕, 陈彦丽, 李大海, 张小东. 组合式Si-PIN 14 MeV中子探测器. 物理学报, 2008, 57(1): 82-87. doi: 10.7498/aps.57.82
    [20] 刘 迎, 王利军, 郭云峰, 张小娟, 高宗慧, 田会娟. 空间分辨漫反射的高阶参量灵敏度. 物理学报, 2007, 56(4): 2119-2123. doi: 10.7498/aps.56.2119
计量
  • 文章访问数:  5092
  • PDF下载量:  540
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-26
  • 修回日期:  2013-01-10
  • 刊出日期:  2013-06-05

/

返回文章
返回