搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声速层流/湍流压缩拐角流动结构的实验研究

武宇 易仕和 陈植 张庆虎 冈敦殿

引用本文:
Citation:

超声速层流/湍流压缩拐角流动结构的实验研究

武宇, 易仕和, 陈植, 张庆虎, 冈敦殿

Experimental investigations on structures of supersonic laminar/turbulent flow over a compression ramp

Wu Yu, Yi Shi-He, Chen Zhi, Zhang Qing-Hu, Gang Dun-Dian
PDF
导出引用
  • 在Ma=3.0的超声速风洞中, 分别对上游边界层为超声速层流和湍流, 压缩角度为25°和28°的压缩拐角流动进行了实验研究. 采用纳米粒子示踪平面激光散射(NPLS)技术获得了流场整体和局部区域的精细结构, 边界层、剪切层、分离激波、回流区和再附激波等典型结构清晰可见, 测量了超声速层流压缩拐角壁面的压力系数. 从时间平均的流场结构中测量出分离激波、再附激波的角度和再附后重新发展的边界层的增长情况, 通过分析时间相关的流场NPLS图像, 可以发现流场结构随时间的演化特性. 实验结果表明: 在25°的压缩角度下, 超声速层流压缩拐角流动发生了典型的分离, 边界层迅速增长失稳转捩, 并引起一道诱导激波, 流场中出现了K-H涡、剪切层和微弱压缩波结构, 而超声速湍流压缩拐角流动没有出现分离, 湍流边界层始终表现为附着状态; 在28° 的压缩角度下, 超声速层流压缩拐角流动进一步分离, 回流区范围明显扩大, 诱导激波、分离激波向上游移动, 再附激波向下游移动, 分离区流动结构复杂, 相比之下, 超声速湍流压缩拐角流动的回流区范围明显较小, 边界层增长缓慢, 流场中没有出现诱导激波、K-H涡和压缩波, 流动分离区域的结构也相对简单, 但分离激波的强度则明显更强.
    Experimental investigations of supersonic laminar/turbulent flow over a compression ramp are carried out in a Mach 3.0 wind tunnel, the angles of ramp are 25 degrees and 28 degrees. Fine structures of holistic flow field and local regions are visualized via nanoparticle-tracer based planar laser scattering (NPLS) technique, some typical flow structures such as boundary layer, shear layer, separation shock, recirculation zone and reattachment shock are visible clearly, and the wall pressure coefficient of laminar flow is measured. The angle of separation shock and reattachment shock, the development of boundary layer after reattachment are measured by time-averaged flow field structures. The analyses of time-relevant NPLS images reveal the spatio temporal evolution characteristics of flow field. The experimental results indicate that when the ramp angle is 25 degrees, a typical separation appearing in the supersonic laminar flow with boundary layer increases and is converted into turbulence quickly, at the same time, a shock is induced by developing boundary layer; K-H vortexes, shear layer and compression waves arise in the flow field. But the supersonic turbulent flow does not show separation, and the turbulent boundary layer always adhers to the wall. When the ramp angle is 28 degrees, the range of recirculation zone expanded obviously in supersonic laminar flow which is separated further, induces shock and separation shock moves upstream, reattachment shock moves downstream. Therefore the structures of separated region is complicated. By comparison with laminar flow, the range of recirculation zone in supersonic turbulent flow is obviously small, boundary layer increases slowly, and there are not any induced shock, K-H vortexes, compression waves in the flow field. The structures of separated region is simple, but the strength of separation shock is much stronger.
    • 基金项目: 国家重点基础研究发展计划(批准号:2009CB724100);国家自然科学基金(批准号:11172326);国防科技大学科研计划(批准号:0100010112001)和国防科技大学优秀研究生创新项目(批准号:B120103)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2009CB724100), the National Natural Science Foundation of China (Grant No. 11172326), the Scientific Research Program of National University of Defense Technology, China (Grant No. 0100010112001) and the Innovation Fund Program for Standout Graduate Students of NUDT, China (Grant No. B120103).
    [1]

    Pan H L, Ma H D, Wang Q 2008 Chin. J. Computat. Phys. 25 549 (in Chinese) [潘宏禄, 马汉东, 王强 2008 计算物理 25 549]

    [2]

    Wang S F, Xu Z Y 1997 Exp. Meas. Fluid Mech. 11 23 (in Chinese) [王世芬, 徐朝仪 1997 流体力学实验与测量 11 23]

    [3]

    Li S X, Chen Y K 2001 Proceedings of the 4th National Symposium on Flow Visualization 2001 p127

    [4]

    Cassel K W, Ruban A I, Walker J D A 1995 J. Fluid Mech. 300 265

    [5]

    Loginov M S, Adams N A, Zheltovodov A A 2006 J. Fluid Mech. 565 135

    [6]

    Gieseking D A, Edwards J R, Choi J I 2011 AIAA Paper 2011-5541

    [7]

    Settles G S, Fitzpatrick T J, Bogdonoff S M 1979 AIAA J. 17 579

    [8]

    Verma S B 2003 Meas. Sci. Technol. 14 989

    [9]

    Chan S C, Clemens N T, Dolling D S 1995 AIAA Paper 1995-2195

    [10]

    Zheltovodov A A 2006 AIAA paper 2006-0496

    [11]

    Yi S H, He L, Tian L F, Zhao Y X 2010 Proceedings of the 14th Chinese National Symposium on Shock Waves Huangshan, July 2010 p29

    [12]

    Zhao Y X, Yi S H, Tian L F, Cheng Z Y 2009 Sci. China E: Tech. Sci. 52 3640

    [13]

    Yi S H, Tian L F, Zhao Y X, He L 2011 Adv. Mech. 41 379 (in Chinese) [易仕和, 田立丰, 赵玉新, 何霖 2011 力学进展 41 379]

    [14]

    Zhao Y X, Yi S H, He L, Cheng Z Y 2007 Chin. Sci. Bull. 52 1297

    [15]

    He L, Yi S H, Zhao Y X, Tian L F, Chen Z 2011 Chin. Sci. Bull. 56 489

    [16]

    Chen Z, Yi S H, He L, Tian L F, Zhu Y Z 2012 Chin. Sci. Bull. 57 584

    [17]

    Zhu Y Z, Yi S H, He L, Tian L F, Zhou Y W 2013 Chin. Phys. B 22 014702

    [18]

    Zhu Y Z, Yi S H, Chen Z, Ge Y, Wang X H, Fu J 2013 Acta Phys. Sin. 62 084219 (in Chinese) [朱杨柱, 易仕和, 陈植, 葛勇, 王小虎, 付佳 2013 物理学报 62 084219]

    [19]

    Zhang Q H, Yi S H, Zhu Y Z, Chen Z, Wu Y 2013 Chin. Phys. Lett. 30 044701

    [20]

    He L, Yi S H, Tian L F, Chen Z, Zhu Y Z 2013 Chin. Phys. B 22 24704

  • [1]

    Pan H L, Ma H D, Wang Q 2008 Chin. J. Computat. Phys. 25 549 (in Chinese) [潘宏禄, 马汉东, 王强 2008 计算物理 25 549]

    [2]

    Wang S F, Xu Z Y 1997 Exp. Meas. Fluid Mech. 11 23 (in Chinese) [王世芬, 徐朝仪 1997 流体力学实验与测量 11 23]

    [3]

    Li S X, Chen Y K 2001 Proceedings of the 4th National Symposium on Flow Visualization 2001 p127

    [4]

    Cassel K W, Ruban A I, Walker J D A 1995 J. Fluid Mech. 300 265

    [5]

    Loginov M S, Adams N A, Zheltovodov A A 2006 J. Fluid Mech. 565 135

    [6]

    Gieseking D A, Edwards J R, Choi J I 2011 AIAA Paper 2011-5541

    [7]

    Settles G S, Fitzpatrick T J, Bogdonoff S M 1979 AIAA J. 17 579

    [8]

    Verma S B 2003 Meas. Sci. Technol. 14 989

    [9]

    Chan S C, Clemens N T, Dolling D S 1995 AIAA Paper 1995-2195

    [10]

    Zheltovodov A A 2006 AIAA paper 2006-0496

    [11]

    Yi S H, He L, Tian L F, Zhao Y X 2010 Proceedings of the 14th Chinese National Symposium on Shock Waves Huangshan, July 2010 p29

    [12]

    Zhao Y X, Yi S H, Tian L F, Cheng Z Y 2009 Sci. China E: Tech. Sci. 52 3640

    [13]

    Yi S H, Tian L F, Zhao Y X, He L 2011 Adv. Mech. 41 379 (in Chinese) [易仕和, 田立丰, 赵玉新, 何霖 2011 力学进展 41 379]

    [14]

    Zhao Y X, Yi S H, He L, Cheng Z Y 2007 Chin. Sci. Bull. 52 1297

    [15]

    He L, Yi S H, Zhao Y X, Tian L F, Chen Z 2011 Chin. Sci. Bull. 56 489

    [16]

    Chen Z, Yi S H, He L, Tian L F, Zhu Y Z 2012 Chin. Sci. Bull. 57 584

    [17]

    Zhu Y Z, Yi S H, He L, Tian L F, Zhou Y W 2013 Chin. Phys. B 22 014702

    [18]

    Zhu Y Z, Yi S H, Chen Z, Ge Y, Wang X H, Fu J 2013 Acta Phys. Sin. 62 084219 (in Chinese) [朱杨柱, 易仕和, 陈植, 葛勇, 王小虎, 付佳 2013 物理学报 62 084219]

    [19]

    Zhang Q H, Yi S H, Zhu Y Z, Chen Z, Wu Y 2013 Chin. Phys. Lett. 30 044701

    [20]

    He L, Yi S H, Tian L F, Chen Z, Zhu Y Z 2013 Chin. Phys. B 22 24704

  • [1] 董帅, 纪祥勇, 李春曦. 横向磁场作用下Taylor-Couette湍流流动的大涡模拟. 物理学报, 2021, 70(18): 184702. doi: 10.7498/aps.70.20210389
    [2] 郭广明, 刘洪, 张斌, 张忠阳, 张庆兵. 混合层流场中涡结构对流速度的特性. 物理学报, 2016, 65(7): 074702. doi: 10.7498/aps.65.074702
    [3] 崔少燕, 吕欣欣, 辛杰. 广义非线性薛定谔方程描述的波坍缩及其演变. 物理学报, 2016, 65(4): 040201. doi: 10.7498/aps.65.040201
    [4] 黄茂静, 包芸. 湍流热对流近底板流态与温度边界层特性. 物理学报, 2016, 65(20): 204702. doi: 10.7498/aps.65.204702
    [5] 武宇, 易仕和, 何霖, 全鹏程, 朱杨柱. 基于流动显示的压缩拐角流动结构定量研究. 物理学报, 2015, 64(1): 014703. doi: 10.7498/aps.64.014703
    [6] 易仕和, 陈植. 隔离段激波串流场特征的试验研究进展. 物理学报, 2015, 64(19): 199401. doi: 10.7498/aps.64.199401
    [7] 张宇, 管玉平, 陈朝晖, 刘海龙, 黄瑞新. 不同滤波方法对揭示全球海洋条带结构的比较. 物理学报, 2015, 64(14): 149201. doi: 10.7498/aps.64.149201
    [8] 李小磊, 秦长剑, 张会臣. 激光空泡在文丘里管中运动的动力学特性. 物理学报, 2014, 63(5): 054707. doi: 10.7498/aps.63.054707
    [9] 全鹏程, 易仕和, 武宇, 朱杨柱, 陈植. 激波与层流/湍流边界层相互作用实验研究. 物理学报, 2014, 63(8): 084703. doi: 10.7498/aps.63.084703
    [10] 沈壮志, 林书玉. 声场中水力空化泡的动力学特性. 物理学报, 2011, 60(8): 084302. doi: 10.7498/aps.60.084302
    [11] 季小玲. 部分相干平顶光束通过湍流大气传输的等效曲率半径. 物理学报, 2010, 59(6): 3953-3958. doi: 10.7498/aps.59.3953
    [12] 梅栋杰, 范宝春, 陈耀慧, 叶经方. 槽道湍流展向振荡电磁力控制的实验研究. 物理学报, 2010, 59(12): 8335-8342. doi: 10.7498/aps.59.8335
    [13] 梅栋杰, 范宝春, 黄乐萍, 董刚. 槽道湍流的展向振荡电磁力壁面减阻. 物理学报, 2010, 59(10): 6786-6792. doi: 10.7498/aps.59.6786
    [14] 张程宾, 陈永平, 施明恒, 付盼盼, 吴嘉峰. 表面粗糙度的分形特征及其对微通道内层流流动的影响. 物理学报, 2009, 58(10): 7050-7056. doi: 10.7498/aps.58.7050
    [15] 陆赫林, 王顺金. 离子温度梯度模湍流的带状流最小自由度模型. 物理学报, 2009, 58(1): 354-362. doi: 10.7498/aps.58.354
    [16] 桑海波, 贺凯芬. 噪声在外加周期信号控制强湍中的作用研究. 物理学报, 2008, 57(11): 6830-6836. doi: 10.7498/aps.57.6830
    [17] 马 军, 靳伍银, 易 鸣, 李延龙. 时变反应扩散系统中螺旋波和湍流的控制. 物理学报, 2008, 57(5): 2832-2841. doi: 10.7498/aps.57.2832
    [18] 连祺祥, 郭 辉. 湍流边界层中下扫流与“反发卡涡”. 物理学报, 2004, 53(7): 2226-2232. doi: 10.7498/aps.53.2226
    [19] 张旭, 沈柯. 环形腔中激光振荡输出的横向斑图及向光学湍流的转变. 物理学报, 2001, 50(11): 2116-2120. doi: 10.7498/aps.50.2116
    [20] 颜家壬, 钟建新. 具有基本流动的两层流体界面和表面孤波. 物理学报, 1990, 39(9): 1393-1399. doi: 10.7498/aps.39.1393
计量
  • 文章访问数:  4173
  • PDF下载量:  17593
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-18
  • 修回日期:  2013-05-16
  • 刊出日期:  2013-09-05

超声速层流/湍流压缩拐角流动结构的实验研究

  • 1. 国防科技大学 航天科学与工程学院, 长沙 410073
    基金项目: 国家重点基础研究发展计划(批准号:2009CB724100);国家自然科学基金(批准号:11172326);国防科技大学科研计划(批准号:0100010112001)和国防科技大学优秀研究生创新项目(批准号:B120103)资助的课题.

摘要: 在Ma=3.0的超声速风洞中, 分别对上游边界层为超声速层流和湍流, 压缩角度为25°和28°的压缩拐角流动进行了实验研究. 采用纳米粒子示踪平面激光散射(NPLS)技术获得了流场整体和局部区域的精细结构, 边界层、剪切层、分离激波、回流区和再附激波等典型结构清晰可见, 测量了超声速层流压缩拐角壁面的压力系数. 从时间平均的流场结构中测量出分离激波、再附激波的角度和再附后重新发展的边界层的增长情况, 通过分析时间相关的流场NPLS图像, 可以发现流场结构随时间的演化特性. 实验结果表明: 在25°的压缩角度下, 超声速层流压缩拐角流动发生了典型的分离, 边界层迅速增长失稳转捩, 并引起一道诱导激波, 流场中出现了K-H涡、剪切层和微弱压缩波结构, 而超声速湍流压缩拐角流动没有出现分离, 湍流边界层始终表现为附着状态; 在28° 的压缩角度下, 超声速层流压缩拐角流动进一步分离, 回流区范围明显扩大, 诱导激波、分离激波向上游移动, 再附激波向下游移动, 分离区流动结构复杂, 相比之下, 超声速湍流压缩拐角流动的回流区范围明显较小, 边界层增长缓慢, 流场中没有出现诱导激波、K-H涡和压缩波, 流动分离区域的结构也相对简单, 但分离激波的强度则明显更强.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回