搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维倾斜场伊辛模型中的纠缠特性

王琪 王晓茜

引用本文:
Citation:

一维倾斜场伊辛模型中的纠缠特性

王琪, 王晓茜

Properties of entanglement in one-dimensional Ising model with a tilted magnetic field

Wang Qi, Wang Xiao-Qian
PDF
导出引用
  • 在一维倾斜场伊辛模型中, 利用并发度和Q测量函数分别对系统的两体纠缠和整体纠缠进行度量, 通过讨论系统中量子纠缠的动力学特性, 能够体现出系统的可积和不可积行为. 由系统基态的纠缠特性可以发现只要倾角不为零时, 系统的Q测量函数会随着磁场的增大而减少, 而用并发度刻画的系统的相变特性, 随着磁场倾角的增大发生了变化. 考虑系统的动力学行为发现, 在一维倾斜场伊辛模型中, 不可积性会抑制两体纠缠, 却促进系统整体纠缠生成.
    We study the entanglement properties in a one-dimensional Ising chain with a tilted magnetic field that is capable of showing both integrable and nonintegrable behaviors. Here the pairwise entanglement is characterized by concurrence and the multipartite entanglement is characterized by the Q measure. According to the entanglement properties of the ground state in the Ising mode, which have tilt angle, we can find that the Q measure decreases with the increasing of the strength of external field. And the phase transition property of the system is changed with the increase of tilt angle for the external magnetic field. We also consider the evolution of entanglement in this model, and find that the nonintegrability can suppress the pairwise entanglement but promotes the multipartite entanglement with the integrable system.
    • 基金项目: 国家自然科学基金(批准号: 11247260, 11305020)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11247260, 11305020).
    [1]

    Lakshminarayan A, Subrahmanyam V 2003 Phys. Rev. A 67 052304

    [2]

    Gu B J, Ye B, Xu W B 2008 Acta Phys. Sin. 57 695 (in Chinese) [顾斌杰, 叶宾, 须文波 2008 物理学报 57 695]

    [3]

    Ye B, Gu R J, Xu W B 2007 Acta Phys. Sin. 56 3718 (in Chinese) [叶宾, 谷瑞军, 须文波 2007 物理学报 56 3718]

    [4]

    Scott A J, Caves C 2003 J. Phys. A 36 9553

    [5]

    Wang X, Ghose S, Sanders B C, Hu B 2004 Phys. Rev. E 70 016217

    [6]

    Santos L F, Rigolin G, Escobar C O 2004 Phys. Rev. A 69 042304

    [7]

    Lakshminarayan A, Subrahmanyam V 2005 Phys. Rev. A 71 062334

    [8]

    Song L J, Yan D, Gai Y J, Wang Y B 2011 Acta Phys. Sin. 60 020302 (in Chinese) [宋立军, 严冬, 盖永杰, 王玉波 2011 物理学报 60 020302]

    [9]

    Wang X Q, Ma J, Zhang X H, Wang X G 2011 Chin. Phys. B 20 050510

    [10]

    Wang X Q, Ma J, Song L J, Zhang X H, Wang X G 2010 Phys. Rev. E 82 056205

    [11]

    Qin M 2010 Acta Phys. Sin. 59 2216 (in Chinese) [秦猛 2010 物理学报 59 2216]

    [12]

    Yang Y, Wang A M 2013 Acta Phys. Sin. 62 130305 (in Chinese) [杨阳, 王安民 2013 物理学报 62 130305]

    [13]

    Karthik J, Sharma A, Lakshminarayan A 2007 Phys. Rev. A 75 022304

    [14]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [15]

    Meyer D A, Wallach N R 2002 J. Math. Phys. 43 4273

    [16]

    Scott A J 2004 Phys. Rev. A 69 052330

    [17]

    Brennen G K 2003 Quantum Information and Computation (Vol. 3) (Berlin: Springer) pp619–626

    [18]

    Castro C S, Sarandy M S 2011 Phys. Rev. A 83 042334

    [19]

    Jordan P, Wigner E 1928 Z. Phys. 47 631

    [20]

    Sachdev S 1999 Quantum Phase Transitions (London: Cambridge University Press) p46

    [21]

    Ma Z H, Chen Z H, Chen J L 2011 Phys. Rev. A 83 062325

    [22]

    Chen J L, Deng D L, Su H Y, Wu C F, Oh C H 2011 Phys. Rev. A 83 022316

    [23]

    Deng D L, Gu S J, Chen J L 2010 Annals Phys. 325 367

  • [1]

    Lakshminarayan A, Subrahmanyam V 2003 Phys. Rev. A 67 052304

    [2]

    Gu B J, Ye B, Xu W B 2008 Acta Phys. Sin. 57 695 (in Chinese) [顾斌杰, 叶宾, 须文波 2008 物理学报 57 695]

    [3]

    Ye B, Gu R J, Xu W B 2007 Acta Phys. Sin. 56 3718 (in Chinese) [叶宾, 谷瑞军, 须文波 2007 物理学报 56 3718]

    [4]

    Scott A J, Caves C 2003 J. Phys. A 36 9553

    [5]

    Wang X, Ghose S, Sanders B C, Hu B 2004 Phys. Rev. E 70 016217

    [6]

    Santos L F, Rigolin G, Escobar C O 2004 Phys. Rev. A 69 042304

    [7]

    Lakshminarayan A, Subrahmanyam V 2005 Phys. Rev. A 71 062334

    [8]

    Song L J, Yan D, Gai Y J, Wang Y B 2011 Acta Phys. Sin. 60 020302 (in Chinese) [宋立军, 严冬, 盖永杰, 王玉波 2011 物理学报 60 020302]

    [9]

    Wang X Q, Ma J, Zhang X H, Wang X G 2011 Chin. Phys. B 20 050510

    [10]

    Wang X Q, Ma J, Song L J, Zhang X H, Wang X G 2010 Phys. Rev. E 82 056205

    [11]

    Qin M 2010 Acta Phys. Sin. 59 2216 (in Chinese) [秦猛 2010 物理学报 59 2216]

    [12]

    Yang Y, Wang A M 2013 Acta Phys. Sin. 62 130305 (in Chinese) [杨阳, 王安民 2013 物理学报 62 130305]

    [13]

    Karthik J, Sharma A, Lakshminarayan A 2007 Phys. Rev. A 75 022304

    [14]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [15]

    Meyer D A, Wallach N R 2002 J. Math. Phys. 43 4273

    [16]

    Scott A J 2004 Phys. Rev. A 69 052330

    [17]

    Brennen G K 2003 Quantum Information and Computation (Vol. 3) (Berlin: Springer) pp619–626

    [18]

    Castro C S, Sarandy M S 2011 Phys. Rev. A 83 042334

    [19]

    Jordan P, Wigner E 1928 Z. Phys. 47 631

    [20]

    Sachdev S 1999 Quantum Phase Transitions (London: Cambridge University Press) p46

    [21]

    Ma Z H, Chen Z H, Chen J L 2011 Phys. Rev. A 83 062325

    [22]

    Chen J L, Deng D L, Su H Y, Wu C F, Oh C H 2011 Phys. Rev. A 83 022316

    [23]

    Deng D L, Gu S J, Chen J L 2010 Annals Phys. 325 367

计量
  • 文章访问数:  2860
  • PDF下载量:  510
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-11
  • 修回日期:  2013-08-14
  • 刊出日期:  2013-11-05

一维倾斜场伊辛模型中的纠缠特性

  • 1. 长春理工大学 理学院, 长春 130022
    基金项目: 国家自然科学基金(批准号: 11247260, 11305020)资助的课题.

摘要: 在一维倾斜场伊辛模型中, 利用并发度和Q测量函数分别对系统的两体纠缠和整体纠缠进行度量, 通过讨论系统中量子纠缠的动力学特性, 能够体现出系统的可积和不可积行为. 由系统基态的纠缠特性可以发现只要倾角不为零时, 系统的Q测量函数会随着磁场的增大而减少, 而用并发度刻画的系统的相变特性, 随着磁场倾角的增大发生了变化. 考虑系统的动力学行为发现, 在一维倾斜场伊辛模型中, 不可积性会抑制两体纠缠, 却促进系统整体纠缠生成.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回