搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单晶硅微纳构件加工表面性能的时变性研究

胡兴雷 孙雅洲 梁迎春 陈家轩

引用本文:
Citation:

单晶硅微纳构件加工表面性能的时变性研究

胡兴雷, 孙雅洲, 梁迎春, 陈家轩

Performance evolution process of machined surface of monocrystalline silicon micro/nanostructures

Hu Xing-Lei, Sun Ya-Zhou, Liang Ying-Chun, Chen Jia-Xuan
PDF
导出引用
  • 采用蒙特卡罗方法和分子动力学方法相结合, 模拟单晶硅微纳构件加工表面的时效过程, 研究其对加工表面质量和构件力学性能的影响. 模拟结果表明: 在时效过程中, 单晶硅微纳构件加工变质层的有序度显著提高, 残余应力大幅降低, 表面粗糙度略有增加, 此外还发现加工变质层中非晶硅原子在时效过程中大幅减少, 部分非晶硅出现了再结晶现象, 其中部分BCT5-Si以及金属相(Si-Ⅱ)结构原子转化为金刚石结构(Si-I). 时效作用对加工后单晶硅微纳构件表面性能具有重要的影响, 同时可以提高微纳构件的拉伸力学性能.
    The machined workpiece has high mechanical storage energy because of the defect structures formed in nanocutting and their evolution from high energy state to the low energy state by adjusting atom positions automatically is called surface-energy aging. The effect of surface-energy aging on the surface properties of monocrystalline silicon workpiece is analyzed by Monte Carlo simulations of machined surface. It is shown that the surface-energy aging effect can increase the surface roughness and the degree of order of damaged layer, however reduce the residual stress and the average potential energy of workpiece. Amorphous silicon structure in metamorphic layer decreases and recrystallization phenomenon occurs in the surface-energy aging process. It is found that some β-Si phase structures and BCT5-si phase structures transform into the diamond cubic structure of Si in the surface-energy aging process. Surface-energy aging effect has a great influence on the surface properties of the machined surface of monocrystalline silicon workpiece, and can improve the mechanical properties of micro/nanostructures.
    • 基金项目: 国家杰出青年基金(批准号: 50925521)和国家自然科学基金(批准号: 51075092)资助的课题.
    • Funds: Project supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 50925521) and the National Natural Science Foundation of China (Grant No. 51075092).
    [1]

    Ye Y Y, Biswas R, Morris J R, Bastawros A, Chandra A 2003 Nanotechnology 14 390

    [2]

    Wang H, Liu G Q, Qin X G 2008 Acta Metall. Sin. 44 13 (in Chinese) [王浩, 刘国权, 秦湘阁 2008 金属学报 44 13]

    [3]

    Wang H, Liu G Q, Luan J H, Yue J C, Qin X G 2009 Acta Phys. Sin. 58 S132 (in Chinese) [王浩, 刘国权, 栾军华, 岳景朝, 秦湘阁 2009 物理学报 58 S132]

    [4]

    Wang H, Liu G Q, Qin X G 2009 Rare Metal Mat. Eng. 38 126 (in Chinese) [王浩, 刘国权, 秦湘阁 2009 稀有金属材料与工程 38 126]

    [5]

    Zheng X P, Zhang P F, Liu J, He D Y, Ma J T 2004 Acta Phys. Sin. 53 2687 (in Chinese) [郑小平, 张佩峰, 刘军, 贺德衍, 马健泰 2004 物理学报 53 2687]

    [6]

    Zheng X P, Zhang P F 2010 Comp. Mater. Sci. 50 6

    [7]

    Wang J C, Du G, Wei K L, Zhang X, Liu X Y 2012 Chin. Phys. B 21 117308

    [8]

    Komanduri R, Narulkar R, Raff L M 2004 Philos. Mag. 84 1155

    [9]

    Komanduri R, Raff L M 2002 Phil. Mag. Lett. 82 247

    [10]

    Narulkar R, Raff L M, Komanduri R 2005 Proc. I. Mech. Eng. Part N: J. Nanoeng. Nanosyst. 218 7

    [11]

    Fang F Z, Wu H, Zhou W, Hu X T 2007 J. Mater. Process. Technol. 184 407

    [12]

    Piltz R O, Maclean J R, Clark S J, Ackland G J, Hatton P D, Crain J 1995 Phys. Rev. B 52 4072

    [13]

    Si L N, Guo D, Luo J B 2012 Acta Phys. Sin. 61 168103 (in Chinese) [司丽娜, 郭旦, 雒建斌 2012 物理学报 61 168103]

  • [1]

    Ye Y Y, Biswas R, Morris J R, Bastawros A, Chandra A 2003 Nanotechnology 14 390

    [2]

    Wang H, Liu G Q, Qin X G 2008 Acta Metall. Sin. 44 13 (in Chinese) [王浩, 刘国权, 秦湘阁 2008 金属学报 44 13]

    [3]

    Wang H, Liu G Q, Luan J H, Yue J C, Qin X G 2009 Acta Phys. Sin. 58 S132 (in Chinese) [王浩, 刘国权, 栾军华, 岳景朝, 秦湘阁 2009 物理学报 58 S132]

    [4]

    Wang H, Liu G Q, Qin X G 2009 Rare Metal Mat. Eng. 38 126 (in Chinese) [王浩, 刘国权, 秦湘阁 2009 稀有金属材料与工程 38 126]

    [5]

    Zheng X P, Zhang P F, Liu J, He D Y, Ma J T 2004 Acta Phys. Sin. 53 2687 (in Chinese) [郑小平, 张佩峰, 刘军, 贺德衍, 马健泰 2004 物理学报 53 2687]

    [6]

    Zheng X P, Zhang P F 2010 Comp. Mater. Sci. 50 6

    [7]

    Wang J C, Du G, Wei K L, Zhang X, Liu X Y 2012 Chin. Phys. B 21 117308

    [8]

    Komanduri R, Narulkar R, Raff L M 2004 Philos. Mag. 84 1155

    [9]

    Komanduri R, Raff L M 2002 Phil. Mag. Lett. 82 247

    [10]

    Narulkar R, Raff L M, Komanduri R 2005 Proc. I. Mech. Eng. Part N: J. Nanoeng. Nanosyst. 218 7

    [11]

    Fang F Z, Wu H, Zhou W, Hu X T 2007 J. Mater. Process. Technol. 184 407

    [12]

    Piltz R O, Maclean J R, Clark S J, Ackland G J, Hatton P D, Crain J 1995 Phys. Rev. B 52 4072

    [13]

    Si L N, Guo D, Luo J B 2012 Acta Phys. Sin. 61 168103 (in Chinese) [司丽娜, 郭旦, 雒建斌 2012 物理学报 61 168103]

计量
  • 文章访问数:  2535
  • PDF下载量:  598
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-20
  • 修回日期:  2013-08-27
  • 刊出日期:  2013-11-05

单晶硅微纳构件加工表面性能的时变性研究

  • 1. 哈尔滨工业大学机电工程学院, 哈尔滨 150001;
  • 2. 北京自动化控制设备研究所, 北京 100074
    基金项目: 国家杰出青年基金(批准号: 50925521)和国家自然科学基金(批准号: 51075092)资助的课题.

摘要: 采用蒙特卡罗方法和分子动力学方法相结合, 模拟单晶硅微纳构件加工表面的时效过程, 研究其对加工表面质量和构件力学性能的影响. 模拟结果表明: 在时效过程中, 单晶硅微纳构件加工变质层的有序度显著提高, 残余应力大幅降低, 表面粗糙度略有增加, 此外还发现加工变质层中非晶硅原子在时效过程中大幅减少, 部分非晶硅出现了再结晶现象, 其中部分BCT5-Si以及金属相(Si-Ⅱ)结构原子转化为金刚石结构(Si-I). 时效作用对加工后单晶硅微纳构件表面性能具有重要的影响, 同时可以提高微纳构件的拉伸力学性能.

English Abstract

参考文献 (13)

目录

    /

    返回文章
    返回