搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亚微秒脉冲表面介质阻挡放电等离子体诱导连续漩涡的研究

车学科 聂万胜 周朋辉 何浩波 田希晖 周思引

引用本文:
Citation:

亚微秒脉冲表面介质阻挡放电等离子体诱导连续漩涡的研究

车学科, 聂万胜, 周朋辉, 何浩波, 田希晖, 周思引

Study on continuous vortices induced by sub-microsecond pulsed surface dielectric barrier discharge plasma

Che Xue-Ke, Nie Wan-Sheng, Zhou Peng-Hui, He Hao-Bo, Tian Xi-Hui, Zhou Si-Yin
PDF
导出引用
  • 使用粒子激光图像测速技术对亚微秒脉冲激励表面介质阻挡放电激励器连续产生诱导漩涡进行了实验研究, 给出了包含脉冲重复频率和漩涡频率的双频率激励模式的具体形式. 实验过程中出现了原发型与继发型两类示踪粒子空白区, 前者由放电释热的微爆炸作用造成, 使得诱导流动远离壁面, 能够减小壁面摩擦阻力的作用; 以暴露电极左侧继发型空白区被完全吹除作为重复启动激励的临界点. 为提高控制效果应采用尽可能高的脉冲重复频率, 漩涡时间内脉冲数量应大于10, 最大诱导速度随脉冲数量增大而增大, 但动量传递效率降低. 使用亚微秒脉冲激励具备释热、体积力两种作用机理.
    The experiments to generate vortices continuously using sub-microsecond pulsed surface dielectric barrier discharge (SDBD) actuator are conducted by particle image velocimetry (PIV). The double-frequencies actuation mode is presented which includes repetitive pulse frequency and vortex frequency. It is found that the empty zone of PIV particles appears in the place where the particles are quite few even nil during the experiments. When discharges occur the primary empty zone is produced by the micro explosion due to the released heat of plasma, and when discharges end the secondary empty zone appears. The induced flow is farther apart form wall and the influence of wall friction should be suppressed due to primary empty zone. When the secondary empty zone on the left side of actuator exposed electrode is blown away completely, the next actuation can start. In order to control the flow more effectively, the pulse voltage with higher repetitive frequency should be applied. The pulse number during one vortex time should be more than 10. As the pulse number increases, the maximal velocity of induced flow increases but the momentum transfer efficiency decreases. The mechanisms releasing heat and body force can be triggered by using the sub-microsecond pulse SDBD actuator.
    • 基金项目: 国家自然科学基金(批准号: 11205244, 51076168)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11205244, 51076168).
    [1]

    Nie W S, Cheng Y F, Che X K 2012 Adv. Mech. 42 6 (in Chinese) [聂万胜, 程钰锋, 车学科 2012 力学进展 42 6]

    [2]

    Xu C Q, Yang B, Meng X S, Li H X 2012 Adv. Aeronaut. Sci. Eng. 3 3 (in Chinese) [徐长群, 杨波, 孟宣市, 李华星 2012 航空工程进展 3 3]

    [3]

    Wang W B, Huang Y, Huang Z B, Zhang X, Wang X N, Shen Z H 2012 J. Exp. Fluid Mech. 26 2 (in Chinese) [王万波, 黄勇, 黄宗波, 张鑫, 王勋年, 沈志洪 2012 实验流体力学 26 2]

    [4]

    Gaitonde D 2010 Int. J. CFD 24 7

    [5]

    Corke T C, Jumper E J, Post M L, Orlov D, McLaughlin T E 2002 AIAA Paper 2002-0350

    [6]

    Wicks M, Thomas F O, Schatzman D, Bowles P, Corke T C 2012 AIAA Paper 2012-824

    [7]

    Wilkinson S P 2003 AIAA Paper 2003-1023

    [8]

    Jukes T N, Choi K S, Johnson G A, Scott S J 2006 AIAA Paper 2006-3693

    [9]

    Im S K, Bak M S, Mungal M G, Cappelli M A 2012 AIAA Paper 2012-2947

    [10]

    Nishihara M, Takashima K, Rich J W, Adamovich I V 2011 AIAA Paper 2011-1144

    [11]

    Shao T, Jiang H, Zhang C, Yan P, Lomaev M, Tarasenko V F 2013 Europhys. Lett. 101 45002

    [12]

    Jiang H, Shao T, Che X K, Zhang C, Li W F, Yan P 2012 High Voltage Eng. 38 7 (in Chinese) [姜慧, 邵涛, 车学科, 章程, 李文峰, 严萍 2012 高电压技术 38 7]

    [13]

    Wu Y, Li Y H, Jia M, Song H M, Su C B, Pu Y K 2010 Chin. J. Aeronaut. 23 39

    [14]

    Che X K, Shao T, Nie W S, Yan P 2012 J. Phys. D: Appl. Phys. 45 145201

    [15]

    Gaitonde D V, McCrinky M H 2012 AIAA Paper 2012-184

    [16]

    Poggie J, Adamovich I, Bisek N, Nishihara M 2013 Plasma Sources Sci. Technol. 22 015001

    [17]

    Rethmel C, Little J, Takashima K, Sinha A, Adamovich I, Samimy M 2011 AIAA Paper 2011-487

    [18]

    Bisek N J, Poggiey J 2012 AIAA Paper 2012-0186

    [19]

    Liang H, Li Y H, Song H M, Jia M, Wu Y 2011 J. Exp. Fluid Mech. 25 3 (in Chinese) [梁华, 李应红, 宋慧敏, 贾敏, 吴云 2011 实验流体力学 25 3]

    [20]

    Cheng Y F, Nie W S, Che X K, Tian X H, Hou Z Y, Zhou P H 2013 Acta Phys. Sin. 62 104702 (in Chinese) [程钰锋, 聂万胜, 车学科, 田希晖, 侯志勇, 周鹏辉 2013 物理学报 62 104702]

    [21]

    Shao T, Zhang D D, Yu Y, Zhang C, Wang J, Yan P, Zhou Y X 2010 IEEE Trans. Plasma Sci. 38 7

    [22]

    Kriegseis J, Schwarz C, Duchmann A, Grundmann S, Tropea C 2012 AIAA Paper 2012-411

  • [1]

    Nie W S, Cheng Y F, Che X K 2012 Adv. Mech. 42 6 (in Chinese) [聂万胜, 程钰锋, 车学科 2012 力学进展 42 6]

    [2]

    Xu C Q, Yang B, Meng X S, Li H X 2012 Adv. Aeronaut. Sci. Eng. 3 3 (in Chinese) [徐长群, 杨波, 孟宣市, 李华星 2012 航空工程进展 3 3]

    [3]

    Wang W B, Huang Y, Huang Z B, Zhang X, Wang X N, Shen Z H 2012 J. Exp. Fluid Mech. 26 2 (in Chinese) [王万波, 黄勇, 黄宗波, 张鑫, 王勋年, 沈志洪 2012 实验流体力学 26 2]

    [4]

    Gaitonde D 2010 Int. J. CFD 24 7

    [5]

    Corke T C, Jumper E J, Post M L, Orlov D, McLaughlin T E 2002 AIAA Paper 2002-0350

    [6]

    Wicks M, Thomas F O, Schatzman D, Bowles P, Corke T C 2012 AIAA Paper 2012-824

    [7]

    Wilkinson S P 2003 AIAA Paper 2003-1023

    [8]

    Jukes T N, Choi K S, Johnson G A, Scott S J 2006 AIAA Paper 2006-3693

    [9]

    Im S K, Bak M S, Mungal M G, Cappelli M A 2012 AIAA Paper 2012-2947

    [10]

    Nishihara M, Takashima K, Rich J W, Adamovich I V 2011 AIAA Paper 2011-1144

    [11]

    Shao T, Jiang H, Zhang C, Yan P, Lomaev M, Tarasenko V F 2013 Europhys. Lett. 101 45002

    [12]

    Jiang H, Shao T, Che X K, Zhang C, Li W F, Yan P 2012 High Voltage Eng. 38 7 (in Chinese) [姜慧, 邵涛, 车学科, 章程, 李文峰, 严萍 2012 高电压技术 38 7]

    [13]

    Wu Y, Li Y H, Jia M, Song H M, Su C B, Pu Y K 2010 Chin. J. Aeronaut. 23 39

    [14]

    Che X K, Shao T, Nie W S, Yan P 2012 J. Phys. D: Appl. Phys. 45 145201

    [15]

    Gaitonde D V, McCrinky M H 2012 AIAA Paper 2012-184

    [16]

    Poggie J, Adamovich I, Bisek N, Nishihara M 2013 Plasma Sources Sci. Technol. 22 015001

    [17]

    Rethmel C, Little J, Takashima K, Sinha A, Adamovich I, Samimy M 2011 AIAA Paper 2011-487

    [18]

    Bisek N J, Poggiey J 2012 AIAA Paper 2012-0186

    [19]

    Liang H, Li Y H, Song H M, Jia M, Wu Y 2011 J. Exp. Fluid Mech. 25 3 (in Chinese) [梁华, 李应红, 宋慧敏, 贾敏, 吴云 2011 实验流体力学 25 3]

    [20]

    Cheng Y F, Nie W S, Che X K, Tian X H, Hou Z Y, Zhou P H 2013 Acta Phys. Sin. 62 104702 (in Chinese) [程钰锋, 聂万胜, 车学科, 田希晖, 侯志勇, 周鹏辉 2013 物理学报 62 104702]

    [21]

    Shao T, Zhang D D, Yu Y, Zhang C, Wang J, Yan P, Zhou Y X 2010 IEEE Trans. Plasma Sci. 38 7

    [22]

    Kriegseis J, Schwarz C, Duchmann A, Grundmann S, Tropea C 2012 AIAA Paper 2012-411

计量
  • 文章访问数:  2350
  • PDF下载量:  558
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-09
  • 修回日期:  2013-07-30
  • 刊出日期:  2013-11-05

亚微秒脉冲表面介质阻挡放电等离子体诱导连续漩涡的研究

  • 1. 装备学院 航天装备系, 北京 101416
    基金项目: 国家自然科学基金(批准号: 11205244, 51076168)资助的课题.

摘要: 使用粒子激光图像测速技术对亚微秒脉冲激励表面介质阻挡放电激励器连续产生诱导漩涡进行了实验研究, 给出了包含脉冲重复频率和漩涡频率的双频率激励模式的具体形式. 实验过程中出现了原发型与继发型两类示踪粒子空白区, 前者由放电释热的微爆炸作用造成, 使得诱导流动远离壁面, 能够减小壁面摩擦阻力的作用; 以暴露电极左侧继发型空白区被完全吹除作为重复启动激励的临界点. 为提高控制效果应采用尽可能高的脉冲重复频率, 漩涡时间内脉冲数量应大于10, 最大诱导速度随脉冲数量增大而增大, 但动量传递效率降低. 使用亚微秒脉冲激励具备释热、体积力两种作用机理.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回