搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管电缆式复合材料的热导率

唐晶晶 冯妍卉 李威 崔柳 张欣欣

引用本文:
Citation:

碳纳米管电缆式复合材料的热导率

唐晶晶, 冯妍卉, 李威, 崔柳, 张欣欣

Thermal conductivity of carbon nanotube cable type composite

Tang Jing-Jing, Feng Yan-Hui, Li Wei, Cui Liu, Zhang Xin-Xin
PDF
导出引用
  • 通过非平衡分子动力学方法, 对单壁碳管填充金纳米线的碳纳米管电缆式复合材料开展热导率的模拟分析. 采用Tersoff势函数描述碳-碳原子间的相互作用, Lennard-Jones长程作用势描述碳-金原子间的相互作用, 嵌入原子势函数描述金-金原子间相互作用. 研究结果表明: 相同尺寸下, 金纳米线的电子热导率相较于空碳管以及电缆式复合材料的声子热导率小很多, 对复合材料总热导率的贡献可以忽略; 由于管内金纳米线的存在, 其与碳管的相互作用使得碳管碳原子倾向于沿着轴向振动, 声子间U散射随之减少, 声子平均自由程增加, 导致复合材料热导率明显大于空碳管, 在100500 K温度范围内高出约20%45%, 但增大幅度随温升呈降低趋势; 复合材料热导率随着管长增加而增大, 变化趋势和空碳管相似, 但其增长幅度更大; 复合材料和空碳管的热导率随管径增大而减小, 且变化幅度基本一致.
    For single-wall carbon nanotubes filled with gold nanowires, a kind of carbon nanotube cable type composite material, its thermal conductivity is simulated by non-equilibrium molecular dynamics method. The Tersoff potential is employed for C-C bonding interactions, the Lennard-Jones potential for C-Au interactions and the embedded atom method potential for Au-Au interactions. It turns out that the electronic thermal conductivity (ETC) of gold nanowire is much lower than that of the composite with the same size, so the ETC of metal nanowire could be ignored. The carbon atoms tend to vibrate along the axial direction of the tube because of the interaction between gold and carbon atoms. Furthermore, the umklapp scatterings among phonons are reduced and the phonon mean free path is increased. Therefore, the thermal conductivity of the composite is 20%45% higher than the bare carbon nanotubes in a temperature range of 100500 K, but the growth rate decreases with the rise of temperature. The thermal conductivity of the composite rises with the increasing of length but in a sharper rate, and decreases with the increasing of diameter in the same rate, which is similar to the bare carbon nanotubes.
    • 基金项目: 国家自然科学基金(批准号: 50876010, 51176011)、国家重点基础研究发展计划(批准号: 2012CB720404)和中央高校基本科研业务费专项资金(批准号: FRF-AS-12-002, FRF-TP-11-001B)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50876010, 51176011), the National Basic Research Program of China (Grant No. 2012CB720404), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. FRF-AS-12-002, FRF-TP-11-001B).
    [1]

    Iijima S 1991 Nature 354 56

    [2]

    Lu J P 1997 Phys. Rev. Lett. 79 1297

    [3]

    Ebbesen T W, Lezec H J, Hiura H, Bennett J W, Ghaemi H F, Thio T 1996 Nature 382 54

    [4]

    Feng D L, Feng Y H, Chen Y, Li W, Zhang X X 2013 Chin. Phys. B 22 016501

    [5]

    Chen J W, Cagin T, Goddard W A 2000 Nanotechnology 11 65

    [6]

    Li W, Feng Y H, Tang J J, Zhang X X 2013 Acta Phys. Sin. 62 076107 (in Chinese) [李威, 冯妍卉, 唐晶晶, 张欣欣 2013 物理学报 62 076107]

    [7]

    Ajayan P M, Iijima S 1993 Nature 361 333

    [8]

    Borowiak-Palen E, Mendoza E, Bachmatiuk A, Rummeli M H, Gemming T, Nogues J, Skumryev V, Kalenczuk R J, Pichler T, Silva S R P 2006 Chem. Phys. Lett. 421 129

    [9]

    Gao X P, Zhang Y, Chen X, Pan G L, Yan J, Wu F, Yuan H T, Song D Y 2004 Science 42 47

    [10]

    Jo C, Lee Ⅱ J 2008 J. Magnet. Magnet. Mater. 320 3256

    [11]

    Zhang K W, Meng L J, Li J, Liu W L, Tang Y, Zhong J X 2008 Acta Phys. Sin. 57 4347 (in Chinese) [张凯旺, 孟利军, 李俊, 刘文亮, 唐翌, 钟建新 2008 物理学报 57 4347]

    [12]

    Zhu B E, Pan Z Y, Hou M, Cheng D, Wang Y X 2011 Molecul. Phys. 109 527

    [13]

    Toprak K, Bayazitoglu Y 2013 Int. J. Heat Mass Transfer 61 172

    [14]

    Kondo Y, Takayanagi K 2000 Science 289 606

    [15]

    Xiao Y, Zhu B E, Guo S H, Wang Y X, Pan Z Y 2009 Nucl. Instrum. Methods Phys. Res. Section B: Beam Interactions with Materials and Atoms 267 3067

    [16]

    Plathe M 1997 J. Chem. Phys. 106 6082

    [17]

    Tersoff 1989 Phys. Rev. B 39 5566

    [18]

    Foiles S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983

    [19]

    Luedtke W D, Landman U 1999 Phys. Rev. Lett. 82 3835

    [20]

    Arcidiacono S, Walther J H, Poulikakos D, Passerone D, Koumoutsakos P 2005 Phys. Rev. Lett. 94 1

    [21]

    Yuan S P, Jiang P X 2006 Int. J. Thermophys. 27 581

    [22]

    Stojanovic N, Maithripala D H S, Berg J M, Holtz M 2010 Phys. Rev. B 82 075418

    [23]

    Lukes J R, Zhong H 2007 J. Heat Trans. 129 705

    [24]

    Noya E G, Srivastava D, Chernozatonskii L A, Menon M 2004 Phys. Rev. B 70 115416

    [25]

    Deng L 2008 M. S. Dissertation (Nanjing: Southeast University) (in Chinese) [邓力 2008 硕士学位论文(南京: 东南大学)]

    [26]

    Yan X H, Xiao Y, Li Z M 2006 J. Appl. Phys. 99 12305

  • [1]

    Iijima S 1991 Nature 354 56

    [2]

    Lu J P 1997 Phys. Rev. Lett. 79 1297

    [3]

    Ebbesen T W, Lezec H J, Hiura H, Bennett J W, Ghaemi H F, Thio T 1996 Nature 382 54

    [4]

    Feng D L, Feng Y H, Chen Y, Li W, Zhang X X 2013 Chin. Phys. B 22 016501

    [5]

    Chen J W, Cagin T, Goddard W A 2000 Nanotechnology 11 65

    [6]

    Li W, Feng Y H, Tang J J, Zhang X X 2013 Acta Phys. Sin. 62 076107 (in Chinese) [李威, 冯妍卉, 唐晶晶, 张欣欣 2013 物理学报 62 076107]

    [7]

    Ajayan P M, Iijima S 1993 Nature 361 333

    [8]

    Borowiak-Palen E, Mendoza E, Bachmatiuk A, Rummeli M H, Gemming T, Nogues J, Skumryev V, Kalenczuk R J, Pichler T, Silva S R P 2006 Chem. Phys. Lett. 421 129

    [9]

    Gao X P, Zhang Y, Chen X, Pan G L, Yan J, Wu F, Yuan H T, Song D Y 2004 Science 42 47

    [10]

    Jo C, Lee Ⅱ J 2008 J. Magnet. Magnet. Mater. 320 3256

    [11]

    Zhang K W, Meng L J, Li J, Liu W L, Tang Y, Zhong J X 2008 Acta Phys. Sin. 57 4347 (in Chinese) [张凯旺, 孟利军, 李俊, 刘文亮, 唐翌, 钟建新 2008 物理学报 57 4347]

    [12]

    Zhu B E, Pan Z Y, Hou M, Cheng D, Wang Y X 2011 Molecul. Phys. 109 527

    [13]

    Toprak K, Bayazitoglu Y 2013 Int. J. Heat Mass Transfer 61 172

    [14]

    Kondo Y, Takayanagi K 2000 Science 289 606

    [15]

    Xiao Y, Zhu B E, Guo S H, Wang Y X, Pan Z Y 2009 Nucl. Instrum. Methods Phys. Res. Section B: Beam Interactions with Materials and Atoms 267 3067

    [16]

    Plathe M 1997 J. Chem. Phys. 106 6082

    [17]

    Tersoff 1989 Phys. Rev. B 39 5566

    [18]

    Foiles S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983

    [19]

    Luedtke W D, Landman U 1999 Phys. Rev. Lett. 82 3835

    [20]

    Arcidiacono S, Walther J H, Poulikakos D, Passerone D, Koumoutsakos P 2005 Phys. Rev. Lett. 94 1

    [21]

    Yuan S P, Jiang P X 2006 Int. J. Thermophys. 27 581

    [22]

    Stojanovic N, Maithripala D H S, Berg J M, Holtz M 2010 Phys. Rev. B 82 075418

    [23]

    Lukes J R, Zhong H 2007 J. Heat Trans. 129 705

    [24]

    Noya E G, Srivastava D, Chernozatonskii L A, Menon M 2004 Phys. Rev. B 70 115416

    [25]

    Deng L 2008 M. S. Dissertation (Nanjing: Southeast University) (in Chinese) [邓力 2008 硕士学位论文(南京: 东南大学)]

    [26]

    Yan X H, Xiao Y, Li Z M 2006 J. Appl. Phys. 99 12305

计量
  • 文章访问数:  3280
  • PDF下载量:  598
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-05
  • 修回日期:  2013-08-07
  • 刊出日期:  2013-11-05

碳纳米管电缆式复合材料的热导率

  • 1. 北京科技大学机械工程学院, 北京 100083;
  • 2. 北京科技大学, 冶金工业节能减排北京市重点实验室, 北京 100083
    基金项目: 国家自然科学基金(批准号: 50876010, 51176011)、国家重点基础研究发展计划(批准号: 2012CB720404)和中央高校基本科研业务费专项资金(批准号: FRF-AS-12-002, FRF-TP-11-001B)资助的课题.

摘要: 通过非平衡分子动力学方法, 对单壁碳管填充金纳米线的碳纳米管电缆式复合材料开展热导率的模拟分析. 采用Tersoff势函数描述碳-碳原子间的相互作用, Lennard-Jones长程作用势描述碳-金原子间的相互作用, 嵌入原子势函数描述金-金原子间相互作用. 研究结果表明: 相同尺寸下, 金纳米线的电子热导率相较于空碳管以及电缆式复合材料的声子热导率小很多, 对复合材料总热导率的贡献可以忽略; 由于管内金纳米线的存在, 其与碳管的相互作用使得碳管碳原子倾向于沿着轴向振动, 声子间U散射随之减少, 声子平均自由程增加, 导致复合材料热导率明显大于空碳管, 在100500 K温度范围内高出约20%45%, 但增大幅度随温升呈降低趋势; 复合材料热导率随着管长增加而增大, 变化趋势和空碳管相似, 但其增长幅度更大; 复合材料和空碳管的热导率随管径增大而减小, 且变化幅度基本一致.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回