搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正交多铁性材料DyMnO3的磁性质研究

王美娜 李英 王天兴 刘国栋

引用本文:
Citation:

正交多铁性材料DyMnO3的磁性质研究

王美娜, 李英, 王天兴, 刘国栋

Magnetic properties of multiferroic material DyMnO3 in orthorhombic structure

Wang Mei-Na, Li Ying, Wang Tian-Xing, Liu Guo-Dong
PDF
导出引用
  • 基于密度泛函理论结合投影缀加平面波方法, 通过VASP软件包执行计算, 在分别考虑电子自旋阻挫共线与非共线的磁性结构基础上, 研究了正交结构下多铁性DyMnO3材料在不同磁性构型下的晶格参数、总能、磁性、电子态密度和能带结构. 计算过程中选取广义梯度近似赝势, 同时使用局域自旋密度近似+U方法处理强关联作用下3d电子的计算结果. 计算结果表明: Mn离子为A型反铁磁态磁性构型的情况下能量最低结构最为稳定, Dy稀土离子磁性甚微, 可忽略不计; 当考虑电子自旋为非共线排列时, 正交DyMnO3的总能提高、磁矩增大; 从电子结构图分析可知, 材料为间接能隙绝缘体, 能隙宽度约为0.38 eV, 加U后为1.36 eV, 导致晶格畸变的主要原因为Mn-3d与O-2p电子之间强烈的杂化作用.
    The lattice parameters, total energy, magnetism, density of states, and band structure in the multiferroic material DyMnO3 with orthorhombic structure are investigated by using different magnetic models, and the non-collinear magnetism and the collinear magnetism are taken into account by using density functional theory combined with the projector augmented wave method via the software package of VASP. The generalized-gradient approximation (GGA) pseudo potential is used in the calculation, and the local spin density approximation +U method is also adopted to deal with the strong correlation effect of the 3d electrons. The results show that Mn ion in the AAFM magnetic model has the lowest energy and is the most stable, while the weak magnetism of the rare earth ion Dy can be neglected, and that the total energy and the magnetic moment of DyMnO3 in orthorhombic structure increase when the non-collinear magnetic structure of Mn ion is considered and that the DyMnO3 material is an indirect-gap insulator with an energy gap value of 0. 38 eV obtained from GGA or 1.36 eV from GGA+U, and the lattice distortion should be considered to be due to the hybridization between Mn-3d and O-2p electrons, which can be analyzed from the density of state.
    • 基金项目: 国家自然科学基金(批准号: 11204064, 51271071)和教育部新世纪创新人才支持计划(批准号: NCET-10-0126)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204064, 51271071) and the Ministry of Education Program for New Century Excellent Talents, China (Grant No. NCET-10-0126).
    [1]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759

    [2]

    Duan P, Tan G T, Dai S Y, Chen Z H, Zhou Y L, L H B 2003 Acta Phys. Sin. 52 2061 (in Chinese) [段苹, 谈国太, 戴守愚, 陈正豪, 周岳亮, 吕惠宾 2003 物理学报 52 2061]

    [3]

    Zhong C G, Jiang Q, Fang J H, Ge C W 2009 Acta Phys. Sin. 58 3491 (in Chinese) [仲崇贵, 蒋青, 方靖淮, 葛存旺 2009 物理学报 58 3491]

    [4]

    Liu F M, Feng H J 2008 Chin. Phys. Lett. 27 087401

    [5]

    Brinks H W, Fjellvag H, Kjekshus A 1997 Solid State Chem. 129 334

    [6]

    Alonso J A, Martinez-Lope M J, Casais M T, Fernandez-Diaz M T 2000 Inorg. Chem. 39 917

    [7]

    Dalslet B T, Sagaard M, Hendriksen P V 2009 Solid State Ionics 180 1050

    [8]

    Dong Z P, Zhang Y 2012 J. Inner Mongolia Univ. Sci. Tech. 31 154 (in Chinese) [董忠平, 张胤 2012 内蒙古科技大学学报 31 154]

    [9]

    Chen J M, Hu Z, Jeng H T 2011 Mater. Phys. 81 23

    [10]

    Zhong C G, Fang J H, Yang J H, Dong Z C, Jiang X F 2011 Acta Phys. Chim. Sin. 27 388 (in Chinese) [仲崇贵, 方靖淮, 杨建华, 董正超, 江学范 2011 物理化学学报 27 388]

    [11]

    Zhong C G, Jiang Q, Jiang X F, Fang J H, Luo L J, Cao H X 2008 J. Atom. Molecul. Phys. 25 1189 (in Chinese) [仲崇贵, 蒋青, 江学范, 方靖淮, 罗礼进, 曹海霞 2008 原子与分子物理学报 25 1189]

    [12]

    Feng S M, Wang L J, Zhu J L, Liu Q Q, Li F Y, Jin C Q 2011 Chin. J. High Pressure Phys. 25 143 (in Chinese) [冯少敏, 王丽娟, 朱金龙, 刘清青, 李凤英, 靳长青 2011 高压物理学报 25 143]

    [13]

    Chen Q, Zhong C G, Yuan G Q, Dong Z C, Fang J H 2013 Acta Phys. Sin. 62 127502 (in Chinese) [陈强, 仲崇贵, 袁国秋, 董正超, 方靖淮 2013 物理学报 62 127502]

    [14]

    Mori T, Aoki K, Kamegashira N, Shishido T, Fukuda T 2000 Mater. Lett. 42 387

    [15]

    Zhang B L, Wang D H, Yang Z, Liu R P, Li X Y 2013 Acta Phys. Sin. 62 143601 (in Chinese) [张宝龙, 王东红, 杨致, 刘瑞萍, 李秀燕 2013 物理学报 62 143601]

    [16]

    Krese G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [17]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [18]

    Goodenough J B 1958 Phys. Chem. Solids 6 287

    [19]

    Kanamori J 1959 Phys. Chem. Solids 10 87

    [20]

    De Gennes P G 1960 Phys. Rev. 118 141

    [21]

    Wang K F, Liu J M, Wang Y 2008 Chin. Sci. Bull. 53 1098 (in Chinese) [王克峰, 刘俊明, 王雨 2008 科学通报 53 1098]

    [22]

    Solovyev I, Hamada N, Terakura K 1996 Phys. Rev. Lett. 76 4825

    [23]

    Song Z W, Liu B G 2013 Chin. Phys. B 22 047506

    [24]

    Li Q Q, Hao Q Y, Li Y, Liu G D 2013 Computat. Mater. Sci. 72 32

  • [1]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759

    [2]

    Duan P, Tan G T, Dai S Y, Chen Z H, Zhou Y L, L H B 2003 Acta Phys. Sin. 52 2061 (in Chinese) [段苹, 谈国太, 戴守愚, 陈正豪, 周岳亮, 吕惠宾 2003 物理学报 52 2061]

    [3]

    Zhong C G, Jiang Q, Fang J H, Ge C W 2009 Acta Phys. Sin. 58 3491 (in Chinese) [仲崇贵, 蒋青, 方靖淮, 葛存旺 2009 物理学报 58 3491]

    [4]

    Liu F M, Feng H J 2008 Chin. Phys. Lett. 27 087401

    [5]

    Brinks H W, Fjellvag H, Kjekshus A 1997 Solid State Chem. 129 334

    [6]

    Alonso J A, Martinez-Lope M J, Casais M T, Fernandez-Diaz M T 2000 Inorg. Chem. 39 917

    [7]

    Dalslet B T, Sagaard M, Hendriksen P V 2009 Solid State Ionics 180 1050

    [8]

    Dong Z P, Zhang Y 2012 J. Inner Mongolia Univ. Sci. Tech. 31 154 (in Chinese) [董忠平, 张胤 2012 内蒙古科技大学学报 31 154]

    [9]

    Chen J M, Hu Z, Jeng H T 2011 Mater. Phys. 81 23

    [10]

    Zhong C G, Fang J H, Yang J H, Dong Z C, Jiang X F 2011 Acta Phys. Chim. Sin. 27 388 (in Chinese) [仲崇贵, 方靖淮, 杨建华, 董正超, 江学范 2011 物理化学学报 27 388]

    [11]

    Zhong C G, Jiang Q, Jiang X F, Fang J H, Luo L J, Cao H X 2008 J. Atom. Molecul. Phys. 25 1189 (in Chinese) [仲崇贵, 蒋青, 江学范, 方靖淮, 罗礼进, 曹海霞 2008 原子与分子物理学报 25 1189]

    [12]

    Feng S M, Wang L J, Zhu J L, Liu Q Q, Li F Y, Jin C Q 2011 Chin. J. High Pressure Phys. 25 143 (in Chinese) [冯少敏, 王丽娟, 朱金龙, 刘清青, 李凤英, 靳长青 2011 高压物理学报 25 143]

    [13]

    Chen Q, Zhong C G, Yuan G Q, Dong Z C, Fang J H 2013 Acta Phys. Sin. 62 127502 (in Chinese) [陈强, 仲崇贵, 袁国秋, 董正超, 方靖淮 2013 物理学报 62 127502]

    [14]

    Mori T, Aoki K, Kamegashira N, Shishido T, Fukuda T 2000 Mater. Lett. 42 387

    [15]

    Zhang B L, Wang D H, Yang Z, Liu R P, Li X Y 2013 Acta Phys. Sin. 62 143601 (in Chinese) [张宝龙, 王东红, 杨致, 刘瑞萍, 李秀燕 2013 物理学报 62 143601]

    [16]

    Krese G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [17]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [18]

    Goodenough J B 1958 Phys. Chem. Solids 6 287

    [19]

    Kanamori J 1959 Phys. Chem. Solids 10 87

    [20]

    De Gennes P G 1960 Phys. Rev. 118 141

    [21]

    Wang K F, Liu J M, Wang Y 2008 Chin. Sci. Bull. 53 1098 (in Chinese) [王克峰, 刘俊明, 王雨 2008 科学通报 53 1098]

    [22]

    Solovyev I, Hamada N, Terakura K 1996 Phys. Rev. Lett. 76 4825

    [23]

    Song Z W, Liu B G 2013 Chin. Phys. B 22 047506

    [24]

    Li Q Q, Hao Q Y, Li Y, Liu G D 2013 Computat. Mater. Sci. 72 32

计量
  • 文章访问数:  3203
  • PDF下载量:  1290
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-29
  • 修回日期:  2013-09-02
  • 刊出日期:  2013-11-05

正交多铁性材料DyMnO3的磁性质研究

  • 1. 河北工业大学材料科学与工程学院, 天津 300130;
  • 2. 河南师范大学物理与电子工程学院, 新乡 453007
    基金项目: 国家自然科学基金(批准号: 11204064, 51271071)和教育部新世纪创新人才支持计划(批准号: NCET-10-0126)资助的课题.

摘要: 基于密度泛函理论结合投影缀加平面波方法, 通过VASP软件包执行计算, 在分别考虑电子自旋阻挫共线与非共线的磁性结构基础上, 研究了正交结构下多铁性DyMnO3材料在不同磁性构型下的晶格参数、总能、磁性、电子态密度和能带结构. 计算过程中选取广义梯度近似赝势, 同时使用局域自旋密度近似+U方法处理强关联作用下3d电子的计算结果. 计算结果表明: Mn离子为A型反铁磁态磁性构型的情况下能量最低结构最为稳定, Dy稀土离子磁性甚微, 可忽略不计; 当考虑电子自旋为非共线排列时, 正交DyMnO3的总能提高、磁矩增大; 从电子结构图分析可知, 材料为间接能隙绝缘体, 能隙宽度约为0.38 eV, 加U后为1.36 eV, 导致晶格畸变的主要原因为Mn-3d与O-2p电子之间强烈的杂化作用.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回