搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

东方超环托卡马克高约束模式边界等离子体输运数值模拟研究

杜海龙 桑超峰 王亮 孙继忠 刘少承 汪惠乾 张凌 郭后扬 王德真

引用本文:
Citation:

东方超环托卡马克高约束模式边界等离子体输运数值模拟研究

杜海龙, 桑超峰, 王亮, 孙继忠, 刘少承, 汪惠乾, 张凌, 郭后扬, 王德真

Modelling of edge plasma transport during H-mode of EAST by SOLPS5.0

Du Hai-Long, Sang Chao-Feng, Wang Liang, Sun Ji-Zhong, Liu Shao-Cheng, Wang Hui-Qian, Zhang Ling, Guo Hou-Yang, Wang De-Zhen
PDF
导出引用
  • 利用SOLPS5.0模拟研究东方超环托卡马克(EAST)高约束模式时的刮削层等离子体. 在高约束模式放电实验参数(第36291炮)的限制下,通过调整上游区径向反常输运系数来实现高约束模式模拟,在上游电子密度和温度与实验符合的条件下能够很好地进行下游区模拟. 在实现高约束模拟的基础上又分别研究了漂移项对偏滤器靶板能流不对称性的影响和上游能流衰减宽度对靶板能流密度峰值的影响. 通过模拟发现,漂移是导致EAST放电内外靶板不对称性的主要原因,增大上游能流衰减宽度可以明显降低入射到靶板的峰值热流,并且偏滤器区辐射以及与中性粒子的相互作用减小了能流的衰减宽度对达到靶板能流的影响.
    This work aims at modeling the ELMing H-mode of the experimental advanced superconducting Tokamak (EAST) using edge plasma code package SOLPS5.0. The steady-state H-mode is obtained by adjusting the perpendicular radial anomalous transport coefficient according to the given upstream profiles of experimental measurements (shot 36291). The downstream divertor region can be then modeled once the simulated upstream electron density and temperature agrees well with the experimental measurements. On the basis of the H-mode simulation, the effect of the drift on divertor targets power asymmetry and that of the power damping width of scrape-off layer (SOL) on the peak power density to the divertor target are modeled, the simulation results indicate that the drift (E×B, B×▽B) is one of the main reasons for targets power asymmetry, and the increasing of power damping width of the SOL will reduce the peak power load on the divertor target sharply; besides, due to the presence of interaction between plasma and neutral gas or radiation in divertor region, the effect of the power damping width on the divertor target power load is decreased.
    • 基金项目: 国际热核聚变实验堆(ITER)计划专项课题(批准号:2013GB109001,2013GB107003)和国家自然科学基金(批准号:11275042,11105177,11305026)资助的课题.
    • Funds: Project supported by National Magnetic Confinement Fusion Science Program, China (Grant Nos. 2013 GB109001, 2013 GB107003) and the National Natural Science Foundation of China (Grant Nos. 11275042, 11105177, 11305026).
    [1]

    Zohm H 1996 Plasma Phys. Control. Fusion 38 105

    [2]

    Connor J W 1998 Plasma Phys. Control. Fusion 40 531

    [3]

    Huang Y, Nie L, Yu D L, Liu C H, Feng Z, Duan X R 2011 Chin. Phys. B 20 055201

    [4]

    Chankin A V, Coster D P, Dux R, Fuchs C, Haas G, Herrmann A, Horton L D, Kallenbach A, Kaufmann M, Konz C, Lackner K, Maggi C, Muller H W, Neuhauser J, Pugno R, Reich M, Schneider W 2006 Plasma Phys. Control. Fusion 48 839

    [5]

    Gulejová B, Pitts R A, Coster D, Bonnin X, Beurskens M, Jachmich S, Kallenbach A 2009 J. Nucl. Mater. 390–391 412

    [6]

    Gulejova B, Pitts R A, Wischmeier M, Behn R, Coster D, Horacek J, Marki J 2007 J. Nucl. Mater. 363–365 1037

    [7]

    Li M H, Ding B J, Kong E H, Zhang L, Zhang X J, Qian J P, Yan N, Han X F, Shan J F, Liu F K, Wang M, Xu H D, Wan B N 2011 Chin. Phys. B 20 125202

    [8]

    Liu Z X, Gao X, Zhang W Y, Li J G, Gong X Z, Jie Y X, Zhang S B, Zeng L, Shi N 2012 Plasma Phys. Control. Fusion 54 085005

    [9]

    Wang L, Xu G S, Guo H Y, Wang H Q, Liu S C, Gan K F, Gong X Z, Liang Y, Yan N, Chen L, Liu J B, Zhang W, Chen R, Shao L M, Xiong H, Qian J P, Shen B, Liu G J, Ding R, Zhang X J, Qin C M, Ding S, Xiang L Y, Hu G H, Wu Z W, Luo G N, Chen J L, Hu L Q, Gao X, Wan B N, Li J G 2013 Nucl. Fusion 53 073028

    [10]

    Wang L, Xu G S, Guo H Y, Chen R, Ding S, Gan K F, Gao X, Gong X Z, Jiang M, Liu P, Liu S C, Luo G N, Ming T F, Wan B N, Wang D S, Wang F M, Wang H Q, Wu Z W, Yan N, Zhang L, Zhang W, Zhang X J, Zhu S Z 2012 Nucl. Fusion 52 063024

    [11]

    Xu G S, Wan B N, Li J G, Gong X Z, Hu J S, Shan J F, Li H, Mansfield D K, Humphreys D A, Naulin V 2011 Nucl. Fusion 51 072001

    [12]

    Canik J M, Maingi R, Soukhanovskii V A, Bell R E, Kugel H W, LeBlanc B P, Osborne T H 2011 J. Nucl. Mater. 415 S409

    [13]

    Xu J C, Wang F D, Lu B, Shen Y C, Li Y Y, Fu J, Shi Y J 2012 Acta Phys. Sin. 61 145203 (in Chinese) [徐经翠, 王福地, 吕波, 沈永才, 李颖颖, 符佳, 石跃江 2012 物理学报 61 145203]

    [14]

    Schneider R, Bonnin X, Borrass K, Coster D P, Kastelewicz H, Reiter D, Rozhansky V A, Braams B J 2006 Contrib. Plasma Phys. 46 3

    [15]

    Reiter D, May Chr, Coster D, Schneider R 1995 J. Nucl. Mater. 220-222 987

    [16]

    Chen Y P, Wang D S, Guo H Y 2011 Nucl. Fusion 51 083042

    [17]

    Pan Y D, Zhang J H, Li W, Li J X 2011 J. Nucl. Mater. 415 S952

    [18]

    Chen Y P, Wang F Q, Zha X J, Hu L Q, Guo H Y, Wu Z W, Zhang X D, Wan B N, Li J G 2013 Phys. Plasmas 20 022311

    [19]

    Chen Y P, Kawashima H, Asakura N, Shimizu K, Takenaga H 2011 Plasma Sci. Technol. 13 302

    [20]

    Guo H Y, Gao X, Li J, Luo G N, Zhu S, Chang J F, Chen Y P, Gao W, Gong X Z, Hu Q S, Li Q, Liu S C, Ming T F, Ou J, Shi Y J, Wan B N, Wang D S, Wang H Q, Wang J, Wu Z W, Xiao B J, Xu Q, Zhang L, Zhang W 2011 J. Nucl. Mater. 415 S369

    [21]

    Coster D P, Schneider R, Neuhauser J, Bosch H S, Wunderlich R, Fuchs C, Mast F, Kallenbach A, Dux R, Becker G, Braams B J, Reiter D 1997 J. Nucl. Mater. 241–243 690

    [22]

    Schneider R, Runov A 2007 Plasma Phys. Control. Fusion 49 S87

    [23]

    Braams B J 1996 Contrib. Plasma Phys. 36 276

    [24]

    Warrier M, Schneider R, Bonnin X 2004 Compt. Phys. Commun. 160 46

    [25]

    Hill D N, Braams B J, Brooks J N, Campbel R, Haines J, Knoll D, Milovich J, Prjnja A, Rognlien T, Stotler D P, Ulrjcksonc M 1991 Proc. 18th Eur. Conf. on Controlled Fusion and Plasma Physics, Berlin, Germany, June 3–7, 1991 vol. III, pp.233

    [26]

    Hill D N, Braams B, Haines J, Milovich J, Rognlien T, Stotler D P, Ulrickson M 1992 Fusion Technol. 21 1263

    [27]

    Zhu S Z, Zha X J 2003 J. Nucl. Mater. 313–316 1020

    [28]

    Fundamenski W 2005 Plasma Phys. Control. Fusion. 47 R163

    [29]

    Batishchev O V, Krasheninnikov S I, Catto Peter J, Batishcheva A A, Sigmar D J, Xu X Q, Byers J A, Rognlien T D, Cohen R H, Shoucri M M, Shkarofskii I P 1997 Phys. Plasmas 4 1672

    [30]

    Tskhakaya D, Subba F, Bonnin X, Coster D P, Fundamenski W, Pitts R A 2008 Contrib. Plasma Phys. 1 89

    [31]

    Horton L D, Chankin A V, Chen Y P, Conway G D, Coster D P, Eich T, Kaveeva E, Konz C, Kurzan B, Neuhauser J, Nunes I, Reich M, Rozhansky V, Saarelma S, Schirmer J, Schweinzer J, Voskoboynikov S, Wolfrum E 2005 Nucl. Fusion. 45 856

    [32]

    Zang Q, Zhao J, Yang L, Hu Q, Xi X, Dai X, Yang J, Han X, Li M, Hsieh C L 2011 Rev. Sci. Instrum. 82 063502

    [33]

    Rozhansky V, Molchanov P, Veselova I, Voskoboynikov S, Kirk A, Fishpool G, Boerner P, Reiter D, Coster D 2013 J. Nucl. Mater. 438 S297

    [34]

    Ou J, Zhu S Z 2007 Plasma Sci. Technol. 9 417

    [35]

    Xu G S, Naulin V, Wan B N, Guo H Y, Zhang W, Chang J F, Yan N, Ding S Y, Zhang L, Wang L, Liu S C, Liu P, Jiang M, Wang H Q, Juul Rasmussen J, Nielsen A H, Xiao C J, Gao X, Hu L Q, Zhu S Z, Wu Z W, Qian J P, Gong X Z 2011 Plasma Sci. Technol. 13 397

    [36]

    Aho-Mantila L, Wischmeier M, Krieger K, Rohde V, Mller H W, Coster, D P, Groth, M, Kirschner A, Neu R, Potzel S, Sieglin B, Wolfrum E 2011 J. Nucl. Mater. 415 S231

    [37]

    Kukushkin A S, Pacher H D, Pacher G W, Kotov V, Pitts R A, Reiter D 2013 J. Nucl. Mater. 438 S203

  • [1]

    Zohm H 1996 Plasma Phys. Control. Fusion 38 105

    [2]

    Connor J W 1998 Plasma Phys. Control. Fusion 40 531

    [3]

    Huang Y, Nie L, Yu D L, Liu C H, Feng Z, Duan X R 2011 Chin. Phys. B 20 055201

    [4]

    Chankin A V, Coster D P, Dux R, Fuchs C, Haas G, Herrmann A, Horton L D, Kallenbach A, Kaufmann M, Konz C, Lackner K, Maggi C, Muller H W, Neuhauser J, Pugno R, Reich M, Schneider W 2006 Plasma Phys. Control. Fusion 48 839

    [5]

    Gulejová B, Pitts R A, Coster D, Bonnin X, Beurskens M, Jachmich S, Kallenbach A 2009 J. Nucl. Mater. 390–391 412

    [6]

    Gulejova B, Pitts R A, Wischmeier M, Behn R, Coster D, Horacek J, Marki J 2007 J. Nucl. Mater. 363–365 1037

    [7]

    Li M H, Ding B J, Kong E H, Zhang L, Zhang X J, Qian J P, Yan N, Han X F, Shan J F, Liu F K, Wang M, Xu H D, Wan B N 2011 Chin. Phys. B 20 125202

    [8]

    Liu Z X, Gao X, Zhang W Y, Li J G, Gong X Z, Jie Y X, Zhang S B, Zeng L, Shi N 2012 Plasma Phys. Control. Fusion 54 085005

    [9]

    Wang L, Xu G S, Guo H Y, Wang H Q, Liu S C, Gan K F, Gong X Z, Liang Y, Yan N, Chen L, Liu J B, Zhang W, Chen R, Shao L M, Xiong H, Qian J P, Shen B, Liu G J, Ding R, Zhang X J, Qin C M, Ding S, Xiang L Y, Hu G H, Wu Z W, Luo G N, Chen J L, Hu L Q, Gao X, Wan B N, Li J G 2013 Nucl. Fusion 53 073028

    [10]

    Wang L, Xu G S, Guo H Y, Chen R, Ding S, Gan K F, Gao X, Gong X Z, Jiang M, Liu P, Liu S C, Luo G N, Ming T F, Wan B N, Wang D S, Wang F M, Wang H Q, Wu Z W, Yan N, Zhang L, Zhang W, Zhang X J, Zhu S Z 2012 Nucl. Fusion 52 063024

    [11]

    Xu G S, Wan B N, Li J G, Gong X Z, Hu J S, Shan J F, Li H, Mansfield D K, Humphreys D A, Naulin V 2011 Nucl. Fusion 51 072001

    [12]

    Canik J M, Maingi R, Soukhanovskii V A, Bell R E, Kugel H W, LeBlanc B P, Osborne T H 2011 J. Nucl. Mater. 415 S409

    [13]

    Xu J C, Wang F D, Lu B, Shen Y C, Li Y Y, Fu J, Shi Y J 2012 Acta Phys. Sin. 61 145203 (in Chinese) [徐经翠, 王福地, 吕波, 沈永才, 李颖颖, 符佳, 石跃江 2012 物理学报 61 145203]

    [14]

    Schneider R, Bonnin X, Borrass K, Coster D P, Kastelewicz H, Reiter D, Rozhansky V A, Braams B J 2006 Contrib. Plasma Phys. 46 3

    [15]

    Reiter D, May Chr, Coster D, Schneider R 1995 J. Nucl. Mater. 220-222 987

    [16]

    Chen Y P, Wang D S, Guo H Y 2011 Nucl. Fusion 51 083042

    [17]

    Pan Y D, Zhang J H, Li W, Li J X 2011 J. Nucl. Mater. 415 S952

    [18]

    Chen Y P, Wang F Q, Zha X J, Hu L Q, Guo H Y, Wu Z W, Zhang X D, Wan B N, Li J G 2013 Phys. Plasmas 20 022311

    [19]

    Chen Y P, Kawashima H, Asakura N, Shimizu K, Takenaga H 2011 Plasma Sci. Technol. 13 302

    [20]

    Guo H Y, Gao X, Li J, Luo G N, Zhu S, Chang J F, Chen Y P, Gao W, Gong X Z, Hu Q S, Li Q, Liu S C, Ming T F, Ou J, Shi Y J, Wan B N, Wang D S, Wang H Q, Wang J, Wu Z W, Xiao B J, Xu Q, Zhang L, Zhang W 2011 J. Nucl. Mater. 415 S369

    [21]

    Coster D P, Schneider R, Neuhauser J, Bosch H S, Wunderlich R, Fuchs C, Mast F, Kallenbach A, Dux R, Becker G, Braams B J, Reiter D 1997 J. Nucl. Mater. 241–243 690

    [22]

    Schneider R, Runov A 2007 Plasma Phys. Control. Fusion 49 S87

    [23]

    Braams B J 1996 Contrib. Plasma Phys. 36 276

    [24]

    Warrier M, Schneider R, Bonnin X 2004 Compt. Phys. Commun. 160 46

    [25]

    Hill D N, Braams B J, Brooks J N, Campbel R, Haines J, Knoll D, Milovich J, Prjnja A, Rognlien T, Stotler D P, Ulrjcksonc M 1991 Proc. 18th Eur. Conf. on Controlled Fusion and Plasma Physics, Berlin, Germany, June 3–7, 1991 vol. III, pp.233

    [26]

    Hill D N, Braams B, Haines J, Milovich J, Rognlien T, Stotler D P, Ulrickson M 1992 Fusion Technol. 21 1263

    [27]

    Zhu S Z, Zha X J 2003 J. Nucl. Mater. 313–316 1020

    [28]

    Fundamenski W 2005 Plasma Phys. Control. Fusion. 47 R163

    [29]

    Batishchev O V, Krasheninnikov S I, Catto Peter J, Batishcheva A A, Sigmar D J, Xu X Q, Byers J A, Rognlien T D, Cohen R H, Shoucri M M, Shkarofskii I P 1997 Phys. Plasmas 4 1672

    [30]

    Tskhakaya D, Subba F, Bonnin X, Coster D P, Fundamenski W, Pitts R A 2008 Contrib. Plasma Phys. 1 89

    [31]

    Horton L D, Chankin A V, Chen Y P, Conway G D, Coster D P, Eich T, Kaveeva E, Konz C, Kurzan B, Neuhauser J, Nunes I, Reich M, Rozhansky V, Saarelma S, Schirmer J, Schweinzer J, Voskoboynikov S, Wolfrum E 2005 Nucl. Fusion. 45 856

    [32]

    Zang Q, Zhao J, Yang L, Hu Q, Xi X, Dai X, Yang J, Han X, Li M, Hsieh C L 2011 Rev. Sci. Instrum. 82 063502

    [33]

    Rozhansky V, Molchanov P, Veselova I, Voskoboynikov S, Kirk A, Fishpool G, Boerner P, Reiter D, Coster D 2013 J. Nucl. Mater. 438 S297

    [34]

    Ou J, Zhu S Z 2007 Plasma Sci. Technol. 9 417

    [35]

    Xu G S, Naulin V, Wan B N, Guo H Y, Zhang W, Chang J F, Yan N, Ding S Y, Zhang L, Wang L, Liu S C, Liu P, Jiang M, Wang H Q, Juul Rasmussen J, Nielsen A H, Xiao C J, Gao X, Hu L Q, Zhu S Z, Wu Z W, Qian J P, Gong X Z 2011 Plasma Sci. Technol. 13 397

    [36]

    Aho-Mantila L, Wischmeier M, Krieger K, Rohde V, Mller H W, Coster, D P, Groth, M, Kirschner A, Neu R, Potzel S, Sieglin B, Wolfrum E 2011 J. Nucl. Mater. 415 S231

    [37]

    Kukushkin A S, Pacher H D, Pacher G W, Kotov V, Pitts R A, Reiter D 2013 J. Nucl. Mater. 438 S203

  • [1] 朱霄龙, 陈伟, 王丰, 王正汹. 托卡马克中低频磁流体不稳定性协同作用引起快粒子输运的混合模拟研究. 物理学报, 2023, 72(21): 215210. doi: 10.7498/aps.72.20230620
    [2] 王福琼, 徐颖峰, 查学军, 钟方川. 托卡马克边界等离子体中钨杂质输运的多流体及动力学模拟. 物理学报, 2023, 72(21): 215213. doi: 10.7498/aps.72.20230991
    [3] 刘冠男, 李新霞, 刘洪波, 孙爱萍. HL-2M托卡马克装置中螺旋波与低杂波的协同电流驱动. 物理学报, 2023, 72(24): 245202. doi: 10.7498/aps.72.20231077
    [4] 沈勇, 董家齐, 何宏达, 潘卫, 郝广周. 托卡马克理想导体壁与磁流体不稳定性. 物理学报, 2023, 72(3): 035203. doi: 10.7498/aps.72.20222043
    [5] 刘朝阳, 章扬忠, 谢涛, 刘阿娣, 周楚. 托卡马克无碰撞捕获电子模在时空表象中的群速度. 物理学报, 2021, 70(11): 115203. doi: 10.7498/aps.70.20202003
    [6] 吴雪科, 孙小琴, 刘殷学, 李会东, 周雨林, 王占辉, 冯灏. 超声分子束注入密度和宽度对托克马克装置加料深度的影响. 物理学报, 2017, 66(19): 195201. doi: 10.7498/aps.66.195201
    [7] 章扬忠, 谢涛. 轴对称环状静电模的漂移波湍流参量激发理论研究. 物理学报, 2014, 63(3): 035202. doi: 10.7498/aps.63.035202
    [8] 张重阳, 刘阿娣, 李弘, 陈志鹏, 李斌, 杨州军, 周楚, 谢锦林, 兰涛, 刘万东, 庄革, 俞昌旋. 双极化频率调制微波反射计在J-TEXT托卡马克上的应用. 物理学报, 2014, 63(12): 125204. doi: 10.7498/aps.63.125204
    [9] 卢洪伟, 查学军, 胡立群, 林士耀, 周瑞杰, 罗家融, 钟方川. HT-7托卡马克slide-away放电充气对等离子体行为的影响. 物理学报, 2012, 61(7): 075202. doi: 10.7498/aps.61.075202
    [10] 洪斌斌, 陈少永, 唐昌建, 张新军, 胡有俊. 托卡马克中电子回旋波与低杂波协同驱动的物理研究. 物理学报, 2012, 61(11): 115207. doi: 10.7498/aps.61.115207
    [11] 卢洪伟, 胡立群, 林士耀, 钟国强, 周瑞杰, 张继宗. HT-7托卡马克等离子体slide-away放电研究. 物理学报, 2010, 59(8): 5596-5601. doi: 10.7498/aps.59.5596
    [12] 徐强, 高翔, 单家方, 胡立群, 赵君煜. HT-7托卡马克大功率低混杂波电流驱动的实验研究. 物理学报, 2009, 58(12): 8448-8453. doi: 10.7498/aps.58.8448
    [13] 黄勤超, 罗家融, 王华忠, 李 翀. EAST装置等离子体放电位形快速识别研究. 物理学报, 2006, 55(1): 281-286. doi: 10.7498/aps.55.281
    [14] 龚学余, 彭晓炜, 谢安平, 刘文艳. 托卡马克等离子体不同运行模式下的电子回旋波电流驱动. 物理学报, 2006, 55(3): 1307-1314. doi: 10.7498/aps.55.1307
    [15] 徐 伟, 万宝年, 谢纪康. HT-6M托卡马克装置杂质输运. 物理学报, 2003, 52(8): 1970-1978. doi: 10.7498/aps.52.1970
    [16] 王文浩, 俞昌旋, 许宇鸿, 闻一之, 凌必利, 宋梅, 万宝年. HT-7超导托卡马克边界等离子体参量及其涨落的实验研究. 物理学报, 2001, 50(8): 1521-1527. doi: 10.7498/aps.50.1521
    [17] 张先梅, 万宝年, 阮怀林, 吴振伟. HT-7托卡马克等离子体欧姆放电时电子热扩散系数的研究. 物理学报, 2001, 50(4): 715-720. doi: 10.7498/aps.50.715
    [18] 王文浩, 许宇鸿, 俞昌旋, 闻一之, 凌必利, 宋梅, 万宝年. HT-7超导托卡马克边缘涨落谱特征及湍流输运研究. 物理学报, 2001, 50(10): 1956-1963. doi: 10.7498/aps.50.1956
    [19] 李建刚, 罗家融, 万宝年, 刘岳修, 龚先祖, 李多传, 揭银先, 李智秀, 徐旵东. 利用低杂波改善约束的实验研究. 物理学报, 2000, 49(12): 2414-2419. doi: 10.7498/aps.49.2414
    [20] 石秉仁. 托卡马克低混杂波电流驱动实验中低混杂波传播的解析分析. 物理学报, 2000, 49(12): 2394-2398. doi: 10.7498/aps.49.2394
计量
  • 文章访问数:  5688
  • PDF下载量:  542
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-01
  • 修回日期:  2013-08-22
  • 刊出日期:  2013-12-05

/

返回文章
返回