搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广义双曲正弦-高斯光束的Gyrator变换性质和暗空心光束产生

朱开成 唐慧琴 郑小娟 唐英

引用本文:
Citation:

广义双曲正弦-高斯光束的Gyrator变换性质和暗空心光束产生

朱开成, 唐慧琴, 郑小娟, 唐英

Gyrator transform of generalized sinh-Gaussian beam and generation of dark hollow light beam with vortex

Zhu Kai-Cheng, Tang Hui-Qin, Zheng Xiao-Juan, Tang Ying
PDF
导出引用
  • 基于Gyrator变换,推导了广义双曲正弦-高斯光束场分布的解析表达式,研究了广义双曲正弦-高斯光束在Gyrator变换平面上的光强分布和相位特性. 结果表明,在Gyrator变换过程中,具有边缘位错相位特性的双曲正弦-高斯光束能转换为具有涡旋的暗空心光束,并确定产生的暗空心光束的拓扑荷指数为一,而不具有边缘位错相位特性的双曲余弦-高斯光束则不可能出现空心结构. 对影响变换场强度和相位分布的束结构参数及系统参数进行了分析讨论.
    Starting from the Gyrator trnasform formula, the closed-form filed distribution of generalized sinh-Gaussian beam passing through such a transform system is derived, and the intensity distribution and the corresponding phase distribution associated with the transforming generalized sinh-Gaussian beams are analyzed. Based on the numerical method, the distributions are graphically drawn and it is found that, for appropriate beam parameters and by carefully adjusting the transform angle of Gyrator transform, the dark hollow beam with topological charge index being unity can be realized with sinh-Gaussian beam carrying an edge dislocation. And the influences of the beam parameters and the transform angle on the formation of perfect dark hollow beams are analyzed. However, it is impossible to obtain dark hollow beam with Gyrator transforming cosh-Gaussian beam.
    [1]

    Rodrigo J A, Alieva T, Calvo M L 2007 Opt. Express 15 2190

    [2]

    Rodrigo J A, Alieva T, Calvo M L 2007 J. Opt. Soc. Am. A 24 3135

    [3]

    Rodrigo J A, Alieva T, Calvo M L 2007 Opt. Commun. 278 279

    [4]

    Li H J 2009 Opt. Lasers Eng. 47 45

    [5]

    Liu Z J, Guo Q, Xu L, Ahmad M A, Liu S T 2010 Opt. Express 18 12033

    [6]

    Singh N, Sinha A 2009 Opt. Lasers Eng. 47 539

    [7]

    Abuturab M R 2012 Opt. Lasers Eng. 50 1383

    [8]

    Nye J F, Berry M 1974 Proc. R. Soc. Lond. A 336 165

    [9]

    Yao A M, Padgett M J 2011 Adv. Opt. Photon. 3 161

    [10]

    Yin J, Gao W, Zhu Y 2003 Prog. Opt. 44 119

    [11]

    Deng D, Fu X, Wei C, Shao J, Fan Z 2005 Appl. Opt. 44 7187

    [12]

    Cai Y, Zhang L 2006 J. Opt. Soc. Am. B 23 1398

    [13]

    Petrov D V 2001 Opt. Commun. 188 307

    [14]

    Yan H W, L B D 2008 Opt. Commun. 282 717

    [15]

    He D, Gao Z H, Yan H W, L B D 2011 Chin. Phys. B 20 014201

    [16]

    Chen H T, Gao Z H, Yang H J, Zou X F, Liu X Q 2012 J. Mod. Opt. 59 579

    [17]

    Casperson L W, Hall D G, Tovar A A 1997 J. Opt. Soc. Am. A 14 3341

    [18]

    Casperson L W, Tovar A A 1998 J. Opt. Soc. Am. A 15 954

    [19]

    Tovar A A, Casperson L W 1998 J. Opt. Soc. Am. A 15 2425

    [20]

    Zhang B, Ma H, L B D 1999 Acta Phys. Sin. 48 1869 (in Chinese) [张彬, 马虹, 吕百达 1999 物理学报 48 1869]

    [21]

    Eyyuboglu H T, Baykal Y 2005 J. Opt. Soc. Am. A 22 2709

    [22]

    Eyyuboglu H T, Tanyer H 2007 Optik 118 289

    [23]

    Ding P H, Qu J, Meng K, Cui Z F 2008 Opt. Commun. 281 395

    [24]

    Sun Q G, Zhou K Y, Fang G Y, Zhang G Q, Liu Z J, Liu S T 2012 Opt. Express 20 9682

    [25]

    He X M, L B D 2012 Acta Phys. Sin. 61 054201 (in Chinese) [何雪梅, 吕百达 2012 物理学报 61 054201]

    [26]

    Tang H Q, Zhu K C 2013 Opt. Lasers Tech. 54 68

  • [1]

    Rodrigo J A, Alieva T, Calvo M L 2007 Opt. Express 15 2190

    [2]

    Rodrigo J A, Alieva T, Calvo M L 2007 J. Opt. Soc. Am. A 24 3135

    [3]

    Rodrigo J A, Alieva T, Calvo M L 2007 Opt. Commun. 278 279

    [4]

    Li H J 2009 Opt. Lasers Eng. 47 45

    [5]

    Liu Z J, Guo Q, Xu L, Ahmad M A, Liu S T 2010 Opt. Express 18 12033

    [6]

    Singh N, Sinha A 2009 Opt. Lasers Eng. 47 539

    [7]

    Abuturab M R 2012 Opt. Lasers Eng. 50 1383

    [8]

    Nye J F, Berry M 1974 Proc. R. Soc. Lond. A 336 165

    [9]

    Yao A M, Padgett M J 2011 Adv. Opt. Photon. 3 161

    [10]

    Yin J, Gao W, Zhu Y 2003 Prog. Opt. 44 119

    [11]

    Deng D, Fu X, Wei C, Shao J, Fan Z 2005 Appl. Opt. 44 7187

    [12]

    Cai Y, Zhang L 2006 J. Opt. Soc. Am. B 23 1398

    [13]

    Petrov D V 2001 Opt. Commun. 188 307

    [14]

    Yan H W, L B D 2008 Opt. Commun. 282 717

    [15]

    He D, Gao Z H, Yan H W, L B D 2011 Chin. Phys. B 20 014201

    [16]

    Chen H T, Gao Z H, Yang H J, Zou X F, Liu X Q 2012 J. Mod. Opt. 59 579

    [17]

    Casperson L W, Hall D G, Tovar A A 1997 J. Opt. Soc. Am. A 14 3341

    [18]

    Casperson L W, Tovar A A 1998 J. Opt. Soc. Am. A 15 954

    [19]

    Tovar A A, Casperson L W 1998 J. Opt. Soc. Am. A 15 2425

    [20]

    Zhang B, Ma H, L B D 1999 Acta Phys. Sin. 48 1869 (in Chinese) [张彬, 马虹, 吕百达 1999 物理学报 48 1869]

    [21]

    Eyyuboglu H T, Baykal Y 2005 J. Opt. Soc. Am. A 22 2709

    [22]

    Eyyuboglu H T, Tanyer H 2007 Optik 118 289

    [23]

    Ding P H, Qu J, Meng K, Cui Z F 2008 Opt. Commun. 281 395

    [24]

    Sun Q G, Zhou K Y, Fang G Y, Zhang G Q, Liu Z J, Liu S T 2012 Opt. Express 20 9682

    [25]

    He X M, L B D 2012 Acta Phys. Sin. 61 054201 (in Chinese) [何雪梅, 吕百达 2012 物理学报 61 054201]

    [26]

    Tang H Q, Zhu K C 2013 Opt. Lasers Tech. 54 68

计量
  • 文章访问数:  2038
  • PDF下载量:  759
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-05
  • 修回日期:  2014-01-24
  • 刊出日期:  2014-05-05

广义双曲正弦-高斯光束的Gyrator变换性质和暗空心光束产生

  • 1. 中南大学物理与电子学院, 超微结构与超快过程湖南省重点实验室, 长沙 410083

摘要: 基于Gyrator变换,推导了广义双曲正弦-高斯光束场分布的解析表达式,研究了广义双曲正弦-高斯光束在Gyrator变换平面上的光强分布和相位特性. 结果表明,在Gyrator变换过程中,具有边缘位错相位特性的双曲正弦-高斯光束能转换为具有涡旋的暗空心光束,并确定产生的暗空心光束的拓扑荷指数为一,而不具有边缘位错相位特性的双曲余弦-高斯光束则不可能出现空心结构. 对影响变换场强度和相位分布的束结构参数及系统参数进行了分析讨论.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回