搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多目标优化推断内爆芯部温度和密度空间分布

董建军 邓博 曹柱荣 江少恩

引用本文:
Citation:

多目标优化推断内爆芯部温度和密度空间分布

董建军, 邓博, 曹柱荣, 江少恩

Deduction of temperature and density spatial profile for implosion core by multi-objective optimization

Dong Jian-Jun, Deng Bo, Cao Zhu-Rong, Jiang Shao-En
PDF
导出引用
  • 内爆芯部的温度和密度分布对理论模拟程序的校验以及深入理解内爆物理非常重要. 本文提出了一种通过内爆芯部X光图像获得归一化的角向平均强度分布,并利用多目标优化算法推断芯部的温度和密度空间分布的方法. 通过吸收模型和无吸收模型加以研究,结果表明无吸收模型推断的温度分布要比吸收模型高大约1倍;在芯部燃料区,两种模型推断的密度分布接近,在芯部边缘,无吸收模型的结果是吸收模型的1/10.
    The spatial profiles of implosion core temperature and density are very important to check the theoretical simulation codes and understand the implosion physics in depth. A method is presented that the temperature and density profiles are evaluated by multi-objective optimization, where the normalized intensity profile is calculated from implosion core X-ray images. Two models, i.e., the model with considering absorption and the model without considering absorption, are studied. The results indicate that the temperature profile from the model without considering absorption is about twice that from the model with considering absorption. The density profiles evaluated by the two models are almost the same in the fuel zone, but the density from the model without considering absorption is more than ten times smaller than that from the model with considering absorption in the ablator zone.
    [1]

    Atzeni S, ter-Vehn J M (translated by Shen B F) 2004 The Physics of Inertial Fusion (1st Ed.) (Beijing: Higher Education Press) pp1-10 (in Chinese) [Atzeni S, ter-Vehn J M 著, (沈百飞译) 2004 惯性聚变物理 (北京: 科学出版社) 第1-10页]

    [2]

    Garnier J 2005 Phys. Plasmas 12 012704

    [3]

    Garnier J, Cherfils-Clerouin C 2008 Phys. Plasmas 15 102702

    [4]

    Betti R, Zhou C, Anderson K, Perkins L, Theobakd W, Solodov A 2007 Phys. Rev. Lett. 98 155001

    [5]

    Sangster T, Goncharov V, Radha P, Smalyuk V, Betti R, Craxton R, Delettrez J, Edgell D, Glebov V, Harding D, Jacobs-Perkins D, Knauer J, Marshall F, McCrory R, McKenty P, Meyerhofer D, Regan S, Saka W, Short R, Skupsky S, Soures J, Stoeckl C, Yaakobi B 2008 Phys. Rev. Lett. 100 185006

    [6]

    Lafon M, Ribeyre X, Schurtz G 2010 Phys. Plasmas 17 052704

    [7]

    Welser L, Haynes D, Mancini R, Cooley J, Tommasini R, Golovkin I, Sherrill M, Haan S 2009 High Energy Density Physics 5 249

    [8]

    Pu Y D, Zhang J Y, Yang J M, Huang T X, Ding Y K 2011 Chin. Phys. B 20 015202

    [9]

    Hammel B, Scott H, Regan S, Cerjan C, Clark D, Edwards M, Epstein R, Glenzer S, Haan S, Izumi N, Koch J, Kyrala G, Landen O, Langer S, Peterson K, Smalyuk V, Suter L, Wilson D 2011 Phys. Plasmas 18 056310

    [10]

    Welser L, Mancini R, Haynes D, Haan S, Golovkin I, MacFarlane J, Radha P, Delettrez J, Regan S, Koch J, Izumi N, Tommasini R, Smalyuk V 2007 Phys. Plasmas 14 072705

    [11]

    Welser L, Mancini R, Nagayama T 2006 Rev. Sci. Instrum. 77 10E320

    [12]

    Izumi N, Barbee T, Koch J 2006 Rev. Sci. Instrum. 77 083504

    [13]

    MacFarlane J, Golovkin I, Mancini R, Welser L, Bailey J, Koch J, Mehlhorn T, Rochau G, Wang P, Woodruff P 2005 Phys. Rev. E 72 066403

    [14]

    Regan S, Delettrez J, Epstein R, Jaanimagi P, Yaakobi B, Smalyuk V, Marshall F, Meyerhofer D, Seka W 2002 Phys. Plasmas 9 1357

    [15]

    Welser L, Mancini R, Koch J, Izumi N, Tommasini R, Haan S, Haynes D, Golovkin I, MacFarlane J, Delettrez J, Marshall F, Regan S, Smalyuk V, Kyrala G 2007 Phys. Rev. E 76 056403

    [16]

    Golovkin I, Mancini R, Louis S, Ochi Y, Fujita K, Nishimura H, Shirga H, Miyanaga N, Azechi H, Butzbach R, Uschmann I, Forster E, Delettrez J, Koch J, Lee R, Klein L 2002 Phys. Rev. Lett. 88 045002

    [17]

    Koch J, Haan S, Mancini R 2004 J. Quantit. Spectrosc. Radiat. Transfer 88 433

    [18]

    Wang L Q, Wang W M 2014 Chin. Phys. B 23 028703

    [19]

    Duan B, Wu Z Q, Wang J G 2009 Sci. China G 39 43 (in Chinese) [段斌, 吴泽清, 王建国 2009 中国科学G辑 39 43]

    [20]

    Dong J J, Ding Y K, Zhang J Y, Chen B L, Yang Z H, Deng B, Yuan Z, Jiang S E 2012 Acta Phys. Sin. 61 225204 (in Chinese) [董建军, 丁永坤, 张继彦, 陈伯伦, 杨正华, 邓博, 袁铮, 江少恩 2012 物理学报 61 225204]

    [21]

    Xiang Z L, Yu C X 1982 High Temperature Plasma Diagnostict Technology (Shanghai: Shanghai Scientific Technology Press) p14 (in Chinese) [项志遴, 余昌璇 1982 高温等离子体诊断技术 (上海: 上海科学技术出版社) 第14页]

  • [1]

    Atzeni S, ter-Vehn J M (translated by Shen B F) 2004 The Physics of Inertial Fusion (1st Ed.) (Beijing: Higher Education Press) pp1-10 (in Chinese) [Atzeni S, ter-Vehn J M 著, (沈百飞译) 2004 惯性聚变物理 (北京: 科学出版社) 第1-10页]

    [2]

    Garnier J 2005 Phys. Plasmas 12 012704

    [3]

    Garnier J, Cherfils-Clerouin C 2008 Phys. Plasmas 15 102702

    [4]

    Betti R, Zhou C, Anderson K, Perkins L, Theobakd W, Solodov A 2007 Phys. Rev. Lett. 98 155001

    [5]

    Sangster T, Goncharov V, Radha P, Smalyuk V, Betti R, Craxton R, Delettrez J, Edgell D, Glebov V, Harding D, Jacobs-Perkins D, Knauer J, Marshall F, McCrory R, McKenty P, Meyerhofer D, Regan S, Saka W, Short R, Skupsky S, Soures J, Stoeckl C, Yaakobi B 2008 Phys. Rev. Lett. 100 185006

    [6]

    Lafon M, Ribeyre X, Schurtz G 2010 Phys. Plasmas 17 052704

    [7]

    Welser L, Haynes D, Mancini R, Cooley J, Tommasini R, Golovkin I, Sherrill M, Haan S 2009 High Energy Density Physics 5 249

    [8]

    Pu Y D, Zhang J Y, Yang J M, Huang T X, Ding Y K 2011 Chin. Phys. B 20 015202

    [9]

    Hammel B, Scott H, Regan S, Cerjan C, Clark D, Edwards M, Epstein R, Glenzer S, Haan S, Izumi N, Koch J, Kyrala G, Landen O, Langer S, Peterson K, Smalyuk V, Suter L, Wilson D 2011 Phys. Plasmas 18 056310

    [10]

    Welser L, Mancini R, Haynes D, Haan S, Golovkin I, MacFarlane J, Radha P, Delettrez J, Regan S, Koch J, Izumi N, Tommasini R, Smalyuk V 2007 Phys. Plasmas 14 072705

    [11]

    Welser L, Mancini R, Nagayama T 2006 Rev. Sci. Instrum. 77 10E320

    [12]

    Izumi N, Barbee T, Koch J 2006 Rev. Sci. Instrum. 77 083504

    [13]

    MacFarlane J, Golovkin I, Mancini R, Welser L, Bailey J, Koch J, Mehlhorn T, Rochau G, Wang P, Woodruff P 2005 Phys. Rev. E 72 066403

    [14]

    Regan S, Delettrez J, Epstein R, Jaanimagi P, Yaakobi B, Smalyuk V, Marshall F, Meyerhofer D, Seka W 2002 Phys. Plasmas 9 1357

    [15]

    Welser L, Mancini R, Koch J, Izumi N, Tommasini R, Haan S, Haynes D, Golovkin I, MacFarlane J, Delettrez J, Marshall F, Regan S, Smalyuk V, Kyrala G 2007 Phys. Rev. E 76 056403

    [16]

    Golovkin I, Mancini R, Louis S, Ochi Y, Fujita K, Nishimura H, Shirga H, Miyanaga N, Azechi H, Butzbach R, Uschmann I, Forster E, Delettrez J, Koch J, Lee R, Klein L 2002 Phys. Rev. Lett. 88 045002

    [17]

    Koch J, Haan S, Mancini R 2004 J. Quantit. Spectrosc. Radiat. Transfer 88 433

    [18]

    Wang L Q, Wang W M 2014 Chin. Phys. B 23 028703

    [19]

    Duan B, Wu Z Q, Wang J G 2009 Sci. China G 39 43 (in Chinese) [段斌, 吴泽清, 王建国 2009 中国科学G辑 39 43]

    [20]

    Dong J J, Ding Y K, Zhang J Y, Chen B L, Yang Z H, Deng B, Yuan Z, Jiang S E 2012 Acta Phys. Sin. 61 225204 (in Chinese) [董建军, 丁永坤, 张继彦, 陈伯伦, 杨正华, 邓博, 袁铮, 江少恩 2012 物理学报 61 225204]

    [21]

    Xiang Z L, Yu C X 1982 High Temperature Plasma Diagnostict Technology (Shanghai: Shanghai Scientific Technology Press) p14 (in Chinese) [项志遴, 余昌璇 1982 高温等离子体诊断技术 (上海: 上海科学技术出版社) 第14页]

  • [1] 李文秋, 唐彦娜, 刘雅琳, 王刚. 电子温度各向异性对螺旋波m = 1角向模功率沉积特性的影响. 物理学报, 2024, 73(7): 075202. doi: 10.7498/aps.73.20231759
    [2] 刘芙妍, 颜冰. 磁偶极子阵列模型的适用性研究与优化分析. 物理学报, 2022, 71(12): 124101. doi: 10.7498/aps.71.20212223
    [3] 戴忠华, 周穗华, 张晓兵. 多目标优化的舰船磁场建模方法. 物理学报, 2021, 70(16): 164101. doi: 10.7498/aps.70.20210334
    [4] 潘辉, 王亮, 王强龙, 陈利民, 贾峰, 刘震宇. 基于Pareto优化理论的多目标超椭梯度线圈设计. 物理学报, 2017, 66(9): 098301. doi: 10.7498/aps.66.098301
    [5] 黄莉莉, 方晓惠, 崔元玲, 胡明列, 王清月. 多芯光子晶体光纤优化掺杂分布实现同相位超模输出. 物理学报, 2014, 63(1): 014204. doi: 10.7498/aps.63.014204
    [6] 高洪元, 李晨琬. 膜量子蜂群优化的多目标频谱分配. 物理学报, 2014, 63(12): 128802. doi: 10.7498/aps.63.128802
    [7] 陈涵瀛, 高璞珍, 谭思超, 付学宽. 自然循环流动不稳定性的多目标优化极限学习机预测方法. 物理学报, 2014, 63(20): 200505. doi: 10.7498/aps.63.200505
    [8] 胡海豹, 鲍路瑶, 黄苏和. 纳米通道内液态微流动密度分布特性数值模拟研究. 物理学报, 2013, 62(12): 124705. doi: 10.7498/aps.62.124705
    [9] 柴争义, 陈亮, 朱思峰. 混沌免疫多目标算法求解认知引擎参数优化问题. 物理学报, 2012, 61(5): 058801. doi: 10.7498/aps.61.058801
    [10] 董建军, 曹柱荣, 陈伯伦, 黄天暄, 缪文勇, 张继彦, 刘慎业, 江少恩, 丁永坤, 谷渝秋, 单连强. 基于Abel逆变换的辐射驱动内爆壳层密度分布研究. 物理学报, 2012, 61(11): 115206. doi: 10.7498/aps.61.115206
    [11] 董建军, 丁永坤, 曹柱荣, 张继彦, 陈伯伦, 杨正华, 邓博, 袁铮, 江少恩. 辐射驱动内爆最大压缩时刻芯部状态的研究. 物理学报, 2012, 61(22): 225204. doi: 10.7498/aps.61.225204
    [12] 朱樟明, 万达经, 杨银堂. 一种基于多目标约束的互连线宽和线间距优化模型. 物理学报, 2010, 59(7): 4837-4842. doi: 10.7498/aps.59.4837
    [13] 丁宁, 张扬, 刘全, 肖德龙, 束小建, 宁成. 电感分布对双层丝阵Z箍缩内爆动力学模式的影响. 物理学报, 2009, 58(2): 1083-1090. doi: 10.7498/aps.58.1083
    [14] 万 雄, 于盛林, 王长坤, 乐淑萍, 李冰颖, 何兴道. 多目标优化发射层析算法在等离子体场光谱诊断中的应用. 物理学报, 2004, 53(9): 3104-3113. doi: 10.7498/aps.53.3104
    [15] 滕浩, 曹磊峰, 成金秀, 陈家斌, 杨向东, 刘忠礼, 郑志坚. 激光聚变爆推靶内爆区空间分布的测量. 物理学报, 2002, 51(4): 835-838. doi: 10.7498/aps.51.835
    [16] 杨洪琼, 杨建伦, 温树槐, 王根兴, 郭玉芝, 唐正元, 牟维兵, 马驰. 激光直接驱动内爆DT燃料面密度诊断. 物理学报, 2001, 50(12): 2408-2412. doi: 10.7498/aps.50.2408
    [17] 刘才根, 钱尚介, 万华明. 电子回旋波驱动的托卡马克芯部等离子体极向旋转. 物理学报, 1998, 47(9): 1515-1519. doi: 10.7498/aps.47.1515
    [18] 苏子敏, 彭少麒. 用内光发射瞬态电流温度谱测定a-Si:H的隙态密度分布. 物理学报, 1986, 35(6): 731-740. doi: 10.7498/aps.35.731
    [19] 杨立铭. 原子核内核子轨道角動量分布与核子密度. 物理学报, 1953, 9(4): 302-316. doi: 10.7498/aps.9.302
    [20] 胡宁. 圆柱体后及轴对称体后激流平均速度及温度之分布. 物理学报, 1944, 5(1): 1-29. doi: 10.7498/aps.5.1
计量
  • 文章访问数:  4577
  • PDF下载量:  412
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-05
  • 修回日期:  2014-02-21
  • 刊出日期:  2014-06-05

/

返回文章
返回