搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂离子电池SnSb/C复合负极材料的热碳还原法制备及电化学性能研究

李娟 汝强 胡社军 郭凌云

引用本文:
Citation:

锂离子电池SnSb/C复合负极材料的热碳还原法制备及电化学性能研究

李娟, 汝强, 胡社军, 郭凌云

Lithium intercalation properties of SnSb/C composite in carbonthermal reduction as the anode material for lithium ion battery

Li Juan, Ru Qiang, Hu She-Jun, Guo Ling-Yun
PDF
导出引用
  • 采用高温还原技术,以SnO2,SbO3为原料,分别以葡萄糖、中间相碳微球(MCMB)作为还原剂,制备了两种结构的SnSb/C复合材料,并对比了它们的形貌和电化学性能.采用X射线衍射技术、拉曼技术、扫描电子显微镜技术对材料的结构和形貌进行了表征,并且通过测试恒电流充放电曲线、循环伏安曲线和交流阻抗谱分析了材料的电化学性能.实验结果表明:葡萄糖作为还原剂时,形成以合金颗粒为内核,絮状碳壳均匀包裹的微米球状结构,首次放电比容量为793.379 mA·h·g-1,循环50周后仍维持在449.987 mA·h·g-1;而以MCMB作为还原剂时,形成合金颗粒与MCMB混合共存并部分包覆的结构,首次放电比容 量为1164.938 mA·h·g-1,50周后的比容量仅有290.807 mA·h·g-1.
    The SnSb/C composite material is prepared by using the carbonthermal reduction to deal with the mixture of SnO2 and SbO3, respectively with different carbon reductant-glucose and mesocarbon microbead (MCMB). The morphologies and electrochemical properties of two kinds of structures of SnSb/C composite are compared. To characterize the phase and morphology of the composite material, X-ray diffraction, Raman spectra and scanning electron microscope are used. The current charge and discharge, cyclic voltammograms and AC impedancetests are also used to test the electrochemical performance of SnSb/C. The experimental results show that a kind of core-shell structure, of which the alloy particle serves as the core and the pyrolytic carbon as the outside shell, is formed when the glucose is used as the reducing agent. The first discharge specific capacity is 793.379 mA·h/g and it is still kept at 449.987 mA·h/g after 50 cycles. However, when the MCMB is used as the reducing agent, there are only a few of alloy particles attaching to the surface of MCMB, and it is not a kind of core-shell structure but a mixture of alloy particles and MCMB spheres. Its initial discharge specific capacity is 1164.938 mA·h/g, and after 50 cycles it is only 290.807 mA·h/g.
    • 基金项目: 国家自然科学基金(批准号:51101062,51171065)、广东省自然科学基金重点项目(批准号:S2012020010937,10351063101000001)、广州市科技计划(批准号:2011J4100075)、广东省高等学校优秀青年培养基金(批准号:LYM09052)和华南师范大学学生课外科研基金(批准号:13WDGB02)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51101062, 51171065), the Key Program of the Natural Science Foundation of Guangdong Province, China (Grant Nos. S2012020010937, 10351063101000001), the Science and Technology Program of Guangzhou, China (Grant No. 2011J4100075), the Cultivatable Foundation for Distinguished Young Talents of Institution of Higher Education of Guangdong Province, China (Grant No. LYM09052), and the Extracurricular Scientific Reseach Foundation for Students of South China Normal University, China (Grant No. 13WDGB02).
    [1]

    Scrosati B 1995 Nature 373 557

    [2]

    Wang Y X, Chou S L, Kim J H, Liu H K, Dou S X 2013 Electrochim. Acta 93 213

    [3]

    Chen Z X, Xie K, Hong X B 2013 Electrochim. Acta 108 674

    [4]

    Derrien G, Hassoun J, Panero S, Scrosati B 2007 Adv. Mater. 19 2336

    [5]

    Gnanamuthu R M, Mohan S, Lee C W 2012 Mater. Lett. 84 101

    [6]

    Fang G Q, Kaneko S, Liu W W, Xia B B, Sun H D, Zhang R X, Zheng J W, Li D C 2013 Electrochim. Acta 111 627

    [7]

    Hou X H, Hu S J, Li W S, Ru Q, Yu H W, Huang Z W 2008 Chin. Phys. B 17 3422

    [8]

    Huang Z W, Hu S J, Hou X H, Zhao L Z, Ru Q, Li W S, Zhang Z W 2010 Chin. Phys. B 19 117101

    [9]

    Hassoun J, Derrien G, Panero S, Scrosati B 2008 J. Power Sources 183 339

    [10]

    Morcrette M, Larcher D, Tarascon J M, Edström K, Vaughey J T, Thackeray M M 2007 Electrochim. Acta 52 5339

    [11]

    Zheng Y X, Xie J, Liu S Y, Song W T, Cao G S, Zhu T J, Zhao X B 2012 J. Power Sources 202 276

    [12]

    Wang J L, Li Z H, Yang J, Tang J J, Yu J J, Nie W B, Lei G T, Xiao Q Z 2012 Electrochim. Acta 75 115

    [13]

    Lu X H, Zhao W X, Li G R, Hong H E, Tong Y X 2008 Mater. Lett. 62 4280

    [14]

    Wang F, Xu S H, Zhu S S, Peng H, Huang R, Wang L W, Xie X H, Chu P K 2013 Electrochim. Acta 87 250

    [15]

    Si Q, Hanai K, Imanishi N, Kubo M, Hirano A, Takeda Y, Yamamoto O 2009 J. Power Sources 189 761

    [16]

    Jo Y N, Kim Y, Kim J S, Song J H, Kim K J, Kwag C Y, Lee D J, Park C W, Kim Y J 2010 J. Power Sources 195 6031

    [17]

    Ru Q, Hu S J, Zhang Z W, Peng W, Hou X H, Huang Z W 2010 Chin. Sci. Bull. 55 3113

    [18]

    Hou X H, Yu H W, Hu S J 2010 Acta Phys. Sin. 59 8226 (in Chinese) [侯贤华, 余洪文, 胡社军 2010 物理学报 59 8226]

    [19]

    Park C M, Sohn H J 2009 Electrochim. Acta 54 6367

    [20]

    Chang C C 2008 J. Power Sources 175 874

    [21]

    Simonin L, Lafont U, Kelder E M 2008 J. Power Sources 180 859

    [22]

    Zhang S C, Xing Y L, Jiang T, Du Z J, Li F, He L, Liu W B 2011 J. Power Sources 196 6915

    [23]

    Mukaibo H, Momma T, Osaka T 2005 J. Power Sources 146 457

    [24]

    Wachtler M, Winter M, Besenhard J O 2002 J. Power Sources 105 151

    [25]

    Liu Y, Xie J Y, Yang J 2003 J. Power Sources 119-121 572

    [26]

    Wu X D, Wang Z X, Chen L Q, Huang X J 2004 Carbon 42 1965

    [27]

    Fan S F, Sun T, Rui X H, Yan Q Y, Hng H H 2012 J. Power Sources 201 288

    [28]

    Li H, Wang Q, Shi L H, Chen L Q, Huang X J 2002 Chem. Mater. 14 103

    [29]

    Shi L H, Li H, Wang Z X, Huang X J, Chen L Q 2001 J. Mater. Chem. 11 1502

    [30]

    Wang Z, Tian W H, Liu X H, Yang R, Li X G 2007 J. Solid State Chem. 180 3360

    [31]

    Liu S, Li Q, Chen Y X, Zhang F J 2009 J. Alloys Compd. 478 694

    [32]

    Lai J, Guo H J, Wang Z X, Li X H, Zhang X P, Wu F X, Yue P 2012 J. Alloys Compd. 530 30

    [33]

    Li J, Ru Q, Sun D W, Zhang B B, Hu S J, Hou X H 2013 Acta Phys. Sin. 62 098201 (in Chinese) [李娟, 汝强, 孙大伟, 张贝贝, 胡社军, 侯贤华 2013 物理学报 62 098201]

    [34]

    McCann J T, Lim B, Ostermann R, Rycenga M, Marquez M, Xia Y N 2007 Nano Lett. 7 2470

    [35]

    Guo J C, Chen X L, Wang C S 2010 J. Mater. Chem. 20 5035

    [36]

    Li J, Ru Q, Hu S J, Sun D W, Zhang B B, Hou X H 2013 Electrochim. Acta 113 505

    [37]

    Ru Q, Tian Q, Hu S J, Zhao L Z 2011 Int. J. Miner. Metall. Mater. 18 216

    [38]

    Balan L, Schneider R, Billaud D, Lambert J, Ghanbaja J 2005 Mater. Lett. 59 2898

    [39]

    Trifonova A, Wachtler M, Wagner M R, Schroettner H, Mitterbauer C, Hofer F, Möller K C, Winter M, Besenhard J O 2004 Solid State Ionics 168 51

    [40]

    Hassoun J, Derrien G, Panero S, Scrosati B 2009 Electrochim. Acta 54 4441

    [41]

    Suo L M, Hu Y S, Li H, Armand M, Chen L Q 2013 Nat. Commun. 4 1481

    [42]

    Suo L M, Hu Y S, Li H, Wang Z X, Chen L Q, Huang X J 2013 Chin. Sci. Bull. 58 3172 (in Chinese) [索鎏敏, 胡勇胜, 李泓, 王兆翔, 陈立泉, 黄学杰 2013 科学通报 58 3172]

  • [1]

    Scrosati B 1995 Nature 373 557

    [2]

    Wang Y X, Chou S L, Kim J H, Liu H K, Dou S X 2013 Electrochim. Acta 93 213

    [3]

    Chen Z X, Xie K, Hong X B 2013 Electrochim. Acta 108 674

    [4]

    Derrien G, Hassoun J, Panero S, Scrosati B 2007 Adv. Mater. 19 2336

    [5]

    Gnanamuthu R M, Mohan S, Lee C W 2012 Mater. Lett. 84 101

    [6]

    Fang G Q, Kaneko S, Liu W W, Xia B B, Sun H D, Zhang R X, Zheng J W, Li D C 2013 Electrochim. Acta 111 627

    [7]

    Hou X H, Hu S J, Li W S, Ru Q, Yu H W, Huang Z W 2008 Chin. Phys. B 17 3422

    [8]

    Huang Z W, Hu S J, Hou X H, Zhao L Z, Ru Q, Li W S, Zhang Z W 2010 Chin. Phys. B 19 117101

    [9]

    Hassoun J, Derrien G, Panero S, Scrosati B 2008 J. Power Sources 183 339

    [10]

    Morcrette M, Larcher D, Tarascon J M, Edström K, Vaughey J T, Thackeray M M 2007 Electrochim. Acta 52 5339

    [11]

    Zheng Y X, Xie J, Liu S Y, Song W T, Cao G S, Zhu T J, Zhao X B 2012 J. Power Sources 202 276

    [12]

    Wang J L, Li Z H, Yang J, Tang J J, Yu J J, Nie W B, Lei G T, Xiao Q Z 2012 Electrochim. Acta 75 115

    [13]

    Lu X H, Zhao W X, Li G R, Hong H E, Tong Y X 2008 Mater. Lett. 62 4280

    [14]

    Wang F, Xu S H, Zhu S S, Peng H, Huang R, Wang L W, Xie X H, Chu P K 2013 Electrochim. Acta 87 250

    [15]

    Si Q, Hanai K, Imanishi N, Kubo M, Hirano A, Takeda Y, Yamamoto O 2009 J. Power Sources 189 761

    [16]

    Jo Y N, Kim Y, Kim J S, Song J H, Kim K J, Kwag C Y, Lee D J, Park C W, Kim Y J 2010 J. Power Sources 195 6031

    [17]

    Ru Q, Hu S J, Zhang Z W, Peng W, Hou X H, Huang Z W 2010 Chin. Sci. Bull. 55 3113

    [18]

    Hou X H, Yu H W, Hu S J 2010 Acta Phys. Sin. 59 8226 (in Chinese) [侯贤华, 余洪文, 胡社军 2010 物理学报 59 8226]

    [19]

    Park C M, Sohn H J 2009 Electrochim. Acta 54 6367

    [20]

    Chang C C 2008 J. Power Sources 175 874

    [21]

    Simonin L, Lafont U, Kelder E M 2008 J. Power Sources 180 859

    [22]

    Zhang S C, Xing Y L, Jiang T, Du Z J, Li F, He L, Liu W B 2011 J. Power Sources 196 6915

    [23]

    Mukaibo H, Momma T, Osaka T 2005 J. Power Sources 146 457

    [24]

    Wachtler M, Winter M, Besenhard J O 2002 J. Power Sources 105 151

    [25]

    Liu Y, Xie J Y, Yang J 2003 J. Power Sources 119-121 572

    [26]

    Wu X D, Wang Z X, Chen L Q, Huang X J 2004 Carbon 42 1965

    [27]

    Fan S F, Sun T, Rui X H, Yan Q Y, Hng H H 2012 J. Power Sources 201 288

    [28]

    Li H, Wang Q, Shi L H, Chen L Q, Huang X J 2002 Chem. Mater. 14 103

    [29]

    Shi L H, Li H, Wang Z X, Huang X J, Chen L Q 2001 J. Mater. Chem. 11 1502

    [30]

    Wang Z, Tian W H, Liu X H, Yang R, Li X G 2007 J. Solid State Chem. 180 3360

    [31]

    Liu S, Li Q, Chen Y X, Zhang F J 2009 J. Alloys Compd. 478 694

    [32]

    Lai J, Guo H J, Wang Z X, Li X H, Zhang X P, Wu F X, Yue P 2012 J. Alloys Compd. 530 30

    [33]

    Li J, Ru Q, Sun D W, Zhang B B, Hu S J, Hou X H 2013 Acta Phys. Sin. 62 098201 (in Chinese) [李娟, 汝强, 孙大伟, 张贝贝, 胡社军, 侯贤华 2013 物理学报 62 098201]

    [34]

    McCann J T, Lim B, Ostermann R, Rycenga M, Marquez M, Xia Y N 2007 Nano Lett. 7 2470

    [35]

    Guo J C, Chen X L, Wang C S 2010 J. Mater. Chem. 20 5035

    [36]

    Li J, Ru Q, Hu S J, Sun D W, Zhang B B, Hou X H 2013 Electrochim. Acta 113 505

    [37]

    Ru Q, Tian Q, Hu S J, Zhao L Z 2011 Int. J. Miner. Metall. Mater. 18 216

    [38]

    Balan L, Schneider R, Billaud D, Lambert J, Ghanbaja J 2005 Mater. Lett. 59 2898

    [39]

    Trifonova A, Wachtler M, Wagner M R, Schroettner H, Mitterbauer C, Hofer F, Möller K C, Winter M, Besenhard J O 2004 Solid State Ionics 168 51

    [40]

    Hassoun J, Derrien G, Panero S, Scrosati B 2009 Electrochim. Acta 54 4441

    [41]

    Suo L M, Hu Y S, Li H, Armand M, Chen L Q 2013 Nat. Commun. 4 1481

    [42]

    Suo L M, Hu Y S, Li H, Wang Z X, Chen L Q, Huang X J 2013 Chin. Sci. Bull. 58 3172 (in Chinese) [索鎏敏, 胡勇胜, 李泓, 王兆翔, 陈立泉, 黄学杰 2013 科学通报 58 3172]

计量
  • 文章访问数:  4118
  • PDF下载量:  17316
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-27
  • 修回日期:  2014-04-22
  • 刊出日期:  2014-08-05

锂离子电池SnSb/C复合负极材料的热碳还原法制备及电化学性能研究

  • 1. 广东省量子调控工程及量子材料重点实验室, 华南师范大学物理与电信工程学院, 广州 510006;
  • 2. 电化学储能材料与技术教育部工程研究中心, 广州 510006
    基金项目: 国家自然科学基金(批准号:51101062,51171065)、广东省自然科学基金重点项目(批准号:S2012020010937,10351063101000001)、广州市科技计划(批准号:2011J4100075)、广东省高等学校优秀青年培养基金(批准号:LYM09052)和华南师范大学学生课外科研基金(批准号:13WDGB02)资助的课题.

摘要: 采用高温还原技术,以SnO2,SbO3为原料,分别以葡萄糖、中间相碳微球(MCMB)作为还原剂,制备了两种结构的SnSb/C复合材料,并对比了它们的形貌和电化学性能.采用X射线衍射技术、拉曼技术、扫描电子显微镜技术对材料的结构和形貌进行了表征,并且通过测试恒电流充放电曲线、循环伏安曲线和交流阻抗谱分析了材料的电化学性能.实验结果表明:葡萄糖作为还原剂时,形成以合金颗粒为内核,絮状碳壳均匀包裹的微米球状结构,首次放电比容量为793.379 mA·h·g-1,循环50周后仍维持在449.987 mA·h·g-1;而以MCMB作为还原剂时,形成合金颗粒与MCMB混合共存并部分包覆的结构,首次放电比容 量为1164.938 mA·h·g-1,50周后的比容量仅有290.807 mA·h·g-1.

English Abstract

参考文献 (42)

目录

    /

    返回文章
    返回