搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率微波窗内外表面闪络击穿流体模拟研究

董烨 周前红 杨温渊 董志伟 周海京

引用本文:
Citation:

高功率微波窗内外表面闪络击穿流体模拟研究

董烨, 周前红, 杨温渊, 董志伟, 周海京

Numerical investigation on high power microwave flashover and breakdown on inner and outer surface of output-window by EM-fluid simulation

Dong Ye, Zhou Qian-Hong, Yang Wen-Yuan, Dong Zhi-Wei, Zhou Hai-Jing
PDF
导出引用
  • 建立理论模型,将电磁场时域有限差分方法与等离子体流体模型结合,编制一维电磁场与等离子流体耦合程序,数值研究了3 GHz高功率微波窗内外表面闪络击穿的不同物理过程. 研究结果表明:外表面闪络击穿中,输出微波脉宽缩短(未完全截止),窗体前均方根场强呈驻波分布,波节与波腹位置不变,窗体外表面形成有一层高密(约1021·m-3量级)极薄(约mm量级)等离子体(扩散缓慢),入射波可部分透过该薄层等离子体,脉宽缩短主要源于等离子体吸收效应;降低初始等离子体密度、厚度、入射波场强及缩短入射波脉宽等方式,可不同程度地改善输出脉宽缩短效应. 内表面闪络击穿中,窗体前均方根场强亦出现驻波分布(但波节与波腹位置随时间变化),等离子体向波源方向运动;强释气下,输出脉宽缩短(未完全截止),形成多丝状高密(约1021·m-3量级)极薄(约mm量级)等离子体区域(扩散缓慢),间距1/4 微波波长,脉宽缩短主要源于等离子体吸收效应;弱释气、低场强下,脉宽缩短有所改善(但最终截止),形成多带状致密(约1018·m-3量级)略厚(mm-cm量级)等离子体区域(扩散较快),间距1/4波长,脉宽缩短主要源于等离子体吸收效应;弱释气、高场强下,脉宽缩短严重(很快截止),形成块状高密(约1021·m-3量级)较厚(约cm量级)等离子体区域(扩散迅速),脉宽缩短主要源于等离子体反射效应.
    In this paper, an electromagnetic-field FDTD method coupled with plasma fluid model is put forward to investigate the different physical phenomena of high power microwave (HPM) flashover and breakdown on inner and outer surface of output-window. Based on the above theoretical models, a one-dimensional (1D) electromagnetic field and plasma interaction code is programmed by authors. By using the code, the HPM flashover and breakdown on inner and outer surface of output-window are simulated. The numerical results could be concluded as follows. For flashover and breakdown on outer surface, output microwave pulse is shortened without cut-off; there is a standing-wave distribution of electric field RMS (Root-Mean-Square) value before the window with fixed-positions of wave nodes and antinodes; there is a ultra-high-density (~1021 m-3) and ultra-thin (~mm) plasma shell with slow diffusion, microwave could penetrate the plasma-shell partly; the shortening of output microwave is caused by plasma absorption mostly. The output pulse of microwave could be lengthened by reducing the initial density or depth of plasmas; the other way is to shorten incident microwave pulse or reduce the value of incident microwave power. For flashover and breakdown on inner surface, there is also a standing-wave distribution of electric field RMS value before the window but the positions of wave nodes and antinodes vary with time; the plasma region moves toward the microwave source; with strong-outgassing, output microwave pulse is shortened without cut-off, there are “thread-like” ultra-high-density (~ 1021 m-3) and ultra-thin (~mm) plasma regions with slow diffusion, the distance between two “thread-like” regions is about a quarter of microwave wavelength, the shortening of output microwave is caused by plasma absorption mostly; with weak-outgassing and low electric field value, the output pulse of microwave is lengthened but cut-off finally, there are “belt-like” high-density (~ 1018 m-3) and thin (mm-cm) plasma regions with fast diffusion, the distance between two “belt-like” region is about a quarter of microwave wavelength, the shortening of output microwave is caused by plasma absorption mostly; with weak-outgassing and high electric field value, output pulse of microwave is cut-off quickly, “block-like” diffuse ultra-high-density (~1021 m-3) and deep (~ cm) plasma regions are formed with very fast diffusion, and the shortening of output microwave is caused by plasma reflection mostly.
    • 基金项目: 国家重点基础研究发展计划(批准号:2013CB328904)、国家自然科学基金(批准号:11305015,11105018,61201113,11371067)和中国工程物理研究院科学技术发展基金(批准号:2012B0402064)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB328904), the National Natural Science Foundation of China (Grant Nos. 11305015, 11105018, 61201113, 11371067), and the Science and Technology Development Foundation of China Academy of Engineering Physics (Grant No. 2012B0402064).
    [1]

    Barker R J, Schamiloglu E 2001 High-Power Microwaves Sources and Technologies (New Jersey: IEEE Press) pp325-375

    [2]

    Neuber A A, Edmiston G F, Krile J T, Krompholz H, Dickens J C, Kristiansen M 2007 IEEE Trans. Magn. 43 496

    [3]

    Stephens J, Beeson S, Dickens A, Neuber A 2012 Phys. Plasmas 19 112111

    [4]

    Ford P J, Beeson S R, Krompholz H G, Neuber A A 2012 Phys. Plasmas 19 073503

    [5]

    Kim H C, Verboncoeur J P 2005 Phys. Plasmas 12 123504

    [6]

    Kim H C, Verboncoeur J P 2006 Phys. Plasmas 13 123506

    [7]

    Chang C, Liu G, Tang C, Chen C, Fang J 2011 Phys. Plasmas 18 055702

    [8]

    Cai L B, Wang J G 2009 Acta Phys. Sin. 58 3268(in Chinese)[蔡利兵, 王建国 2009 物理学报 58 3268]

    [9]

    Hao X W, Song B P, Zhang G J, Qiu S, Huang W H, Qin F, Jin X 2012 High Power Laser and Particle Beams 24 16(in Chinese)[郝西伟, 宋佰鹏, 张冠军, 秋实, 黄文华, 秦风, 金晓 2012 强激光与粒子束 24 16]

    [10]

    Zhang H B, Yang J H, Cheng G X, Li G L, Shu T 2013 High Power Laser and Particle Beams 25 1189(in Chinese)[张慧博, 杨建华, 程国新, 李国林, 舒挺 2013 强激光与粒子束 25 1189]

    [11]

    Zhao P C, Liao C, Yang D, Zhong X M, Lin W B 2013 Acta Phys. Sin. 62 055101(in Chinese)[赵朋程, 廖成, 杨丹, 钟选明, 林文斌 2013 物理学报 62 055101]

    [12]

    Dong Y, Dong Z W, Zhou Q H, Yang W Y, Zhou H J 2014 Acta Phys. Sin. 63 027901(in Chinese)[董烨, 董志伟, 周前红, 杨温渊, 周海京 2014 物理学报 63 027901]

    [13]

    Nam S K, Verboncoeur J P 2008 Appl. Phys. Lett. 92 231502

    [14]

    Nam S K, Verboncoeur J P 2008 Appl. Phys. Lett. 93 151504

    [15]

    Zhou Q H, Dong Z W, Chen J Y 2011 Acta Phys. Sin. 60 125202(in Chinese)[周前红, 董志伟, 陈京元 2011 物理学报 60 125202]

    [16]

    Hidaka Y, Choi E M, Mastovsky I, Shapiro M, Sirigiri J, Temkin R 2008 Phys. Rev. Lett. 100 035003

    [17]

    Taflove A, Hagness S 2005 Computational Electrodynamics: The Finite-Difference Time-Domain Method (3rd Ed.) (Norwood: Artech House) pp51-105

    [18]

    Ali A W 1988 Laser and Particle Beams. 6 105

    [19]

    Dong Y, Dong Z W, Zhou Q H, Yang W Y, Zhou H J 2014 Acta Phys. Sin. 63 067901(in Chinese)[董烨, 董志伟, 周前红, 杨温渊, 周海京 2014 物理学报 63 067901]

  • [1]

    Barker R J, Schamiloglu E 2001 High-Power Microwaves Sources and Technologies (New Jersey: IEEE Press) pp325-375

    [2]

    Neuber A A, Edmiston G F, Krile J T, Krompholz H, Dickens J C, Kristiansen M 2007 IEEE Trans. Magn. 43 496

    [3]

    Stephens J, Beeson S, Dickens A, Neuber A 2012 Phys. Plasmas 19 112111

    [4]

    Ford P J, Beeson S R, Krompholz H G, Neuber A A 2012 Phys. Plasmas 19 073503

    [5]

    Kim H C, Verboncoeur J P 2005 Phys. Plasmas 12 123504

    [6]

    Kim H C, Verboncoeur J P 2006 Phys. Plasmas 13 123506

    [7]

    Chang C, Liu G, Tang C, Chen C, Fang J 2011 Phys. Plasmas 18 055702

    [8]

    Cai L B, Wang J G 2009 Acta Phys. Sin. 58 3268(in Chinese)[蔡利兵, 王建国 2009 物理学报 58 3268]

    [9]

    Hao X W, Song B P, Zhang G J, Qiu S, Huang W H, Qin F, Jin X 2012 High Power Laser and Particle Beams 24 16(in Chinese)[郝西伟, 宋佰鹏, 张冠军, 秋实, 黄文华, 秦风, 金晓 2012 强激光与粒子束 24 16]

    [10]

    Zhang H B, Yang J H, Cheng G X, Li G L, Shu T 2013 High Power Laser and Particle Beams 25 1189(in Chinese)[张慧博, 杨建华, 程国新, 李国林, 舒挺 2013 强激光与粒子束 25 1189]

    [11]

    Zhao P C, Liao C, Yang D, Zhong X M, Lin W B 2013 Acta Phys. Sin. 62 055101(in Chinese)[赵朋程, 廖成, 杨丹, 钟选明, 林文斌 2013 物理学报 62 055101]

    [12]

    Dong Y, Dong Z W, Zhou Q H, Yang W Y, Zhou H J 2014 Acta Phys. Sin. 63 027901(in Chinese)[董烨, 董志伟, 周前红, 杨温渊, 周海京 2014 物理学报 63 027901]

    [13]

    Nam S K, Verboncoeur J P 2008 Appl. Phys. Lett. 92 231502

    [14]

    Nam S K, Verboncoeur J P 2008 Appl. Phys. Lett. 93 151504

    [15]

    Zhou Q H, Dong Z W, Chen J Y 2011 Acta Phys. Sin. 60 125202(in Chinese)[周前红, 董志伟, 陈京元 2011 物理学报 60 125202]

    [16]

    Hidaka Y, Choi E M, Mastovsky I, Shapiro M, Sirigiri J, Temkin R 2008 Phys. Rev. Lett. 100 035003

    [17]

    Taflove A, Hagness S 2005 Computational Electrodynamics: The Finite-Difference Time-Domain Method (3rd Ed.) (Norwood: Artech House) pp51-105

    [18]

    Ali A W 1988 Laser and Particle Beams. 6 105

    [19]

    Dong Y, Dong Z W, Zhou Q H, Yang W Y, Zhou H J 2014 Acta Phys. Sin. 63 067901(in Chinese)[董烨, 董志伟, 周前红, 杨温渊, 周海京 2014 物理学报 63 067901]

  • [1] 舒盼盼, 赵朋程. 高功率微波介质窗气体侧击穿特性的粒子-蒙特卡罗碰撞模拟. 物理学报, 2024, 73(23): 235101. doi: 10.7498/aps.73.20241177
    [2] 聂永杰, 赵现平, 李盛涛. 聚乙烯陷阱特性对真空直流沿面闪络性能的影响. 物理学报, 2019, 68(22): 227201. doi: 10.7498/aps.68.20190741
    [3] 左春彦, 高飞, 戴忠玲, 王友年. 高功率微波输出窗内侧击穿动力学的PIC/MCC模拟研究. 物理学报, 2018, 67(22): 225201. doi: 10.7498/aps.67.20181260
    [4] 李志刚, 程立, 袁忠才, 汪家春, 时家明. 高功率微波作用下等离子体中的雪崩效应研究. 物理学报, 2017, 66(19): 195202. doi: 10.7498/aps.66.195202
    [5] 陈碧云, 张业荣, 王磊, 王芳芳. 基于交替隐式有限差分法的快速早期乳腺癌时域微波断层成像. 物理学报, 2016, 65(14): 144101. doi: 10.7498/aps.65.144101
    [6] 袁忠才, 时家明. 高功率微波与等离子体相互作用理论和数值研究. 物理学报, 2014, 63(9): 095202. doi: 10.7498/aps.63.095202
    [7] 邹丹旦, 杨维紘. 双流体等离子体模型的动力学可容变分. 物理学报, 2014, 63(3): 030401. doi: 10.7498/aps.63.030401
    [8] 王辉, 黄志祥, 吴先良, 任信钢, 吴博. 双色散模型的辛时域有限差分算法. 物理学报, 2014, 63(7): 070203. doi: 10.7498/aps.63.070203
    [9] 董烨, 董志伟, 周前红, 杨温渊, 周海京. 释气对介质沿面闪络击穿影响的粒子模拟. 物理学报, 2014, 63(2): 027901. doi: 10.7498/aps.63.027901
    [10] 宋玮, 邵浩, 张治强, 黄惠军, 李佳伟, 王康懿, 景洪, 刘英君, 崔新红. 射频击穿等离子体对高功率微波传输特性的影响. 物理学报, 2014, 63(6): 064101. doi: 10.7498/aps.63.064101
    [11] 董烨, 董志伟, 周前红, 杨温渊, 周海京. 沿面闪络流体模型电离参数粒子模拟确定方法. 物理学报, 2014, 63(6): 067901. doi: 10.7498/aps.63.067901
    [12] 周东方, 余道杰, 杨建宏, 侯德亭, 夏蔚, 胡涛, 林竞羽, 饶育萍, 魏进进, 张德伟, 王利萍. 基于混合大气传输模型的单脉冲高功率微波大气击穿理论与实验研究. 物理学报, 2013, 62(1): 014207. doi: 10.7498/aps.62.014207
    [13] 赵朋程, 廖成, 杨丹, 钟选明, 林文斌. 基于流体模型和非平衡态电子能量分布函数的高功率微波气体击穿研究. 物理学报, 2013, 62(5): 055101. doi: 10.7498/aps.62.055101
    [14] 杨利霞, 马辉, 施卫东, 施丽娟, 于萍萍. 基于表面阻抗边界条件的等离子体薄涂层电磁散射的时域有限差分分析. 物理学报, 2013, 62(3): 034102. doi: 10.7498/aps.62.034102
    [15] 李盛涛, 黄奇峰, 孙健, 张拓, 李建英. 聚集态和陷阱对交联聚乙烯真空沿面闪络特性的影响. 物理学报, 2010, 59(1): 422-429. doi: 10.7498/aps.59.422
    [16] 杨利霞, 谢应涛, 孔娃, 于萍萍, 王刚. 斜入射分层线性各向异性等离子体电磁散射时域有限差分方法分析. 物理学报, 2010, 59(9): 6089-6095. doi: 10.7498/aps.59.6089
    [17] 杨涓, 龙春伟, 陈茂林, 许映桥, 谭小群. 外加磁场微波等离子体喷流对平面电磁波衰减的实验研究. 物理学报, 2009, 58(7): 4793-4798. doi: 10.7498/aps.58.4793
    [18] 傅文杰, 鄢 扬. 高功率微波在等离子体填充波导中的谐波产生. 物理学报, 2007, 56(12): 7100-7105. doi: 10.7498/aps.56.7100
    [19] 刘少斌, 张光甫, 袁乃昌. 等离子体覆盖立方散射体目标雷达散射截面的时域有限差分法分析. 物理学报, 2004, 53(8): 2633-2637. doi: 10.7498/aps.53.2633
    [20] 胡斌杰, 阮成礼, 林为干. 有限磁场中等离子体圆柱波导的传播特性. 物理学报, 1998, 47(2): 245-251. doi: 10.7498/aps.47.245
计量
  • 文章访问数:  5587
  • PDF下载量:  517
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-12
  • 修回日期:  2014-05-22
  • 刊出日期:  2014-09-05

/

返回文章
返回