-
建立理论模型,将电磁场时域有限差分方法与等离子体流体模型结合,编制一维电磁场与等离子流体耦合程序,数值研究了3 GHz高功率微波窗内外表面闪络击穿的不同物理过程. 研究结果表明:外表面闪络击穿中,输出微波脉宽缩短(未完全截止),窗体前均方根场强呈驻波分布,波节与波腹位置不变,窗体外表面形成有一层高密(约1021·m-3量级)极薄(约mm量级)等离子体(扩散缓慢),入射波可部分透过该薄层等离子体,脉宽缩短主要源于等离子体吸收效应;降低初始等离子体密度、厚度、入射波场强及缩短入射波脉宽等方式,可不同程度地改善输出脉宽缩短效应. 内表面闪络击穿中,窗体前均方根场强亦出现驻波分布(但波节与波腹位置随时间变化),等离子体向波源方向运动;强释气下,输出脉宽缩短(未完全截止),形成多丝状高密(约1021·m-3量级)极薄(约mm量级)等离子体区域(扩散缓慢),间距1/4 微波波长,脉宽缩短主要源于等离子体吸收效应;弱释气、低场强下,脉宽缩短有所改善(但最终截止),形成多带状致密(约1018·m-3量级)略厚(mm-cm量级)等离子体区域(扩散较快),间距1/4波长,脉宽缩短主要源于等离子体吸收效应;弱释气、高场强下,脉宽缩短严重(很快截止),形成块状高密(约1021·m-3量级)较厚(约cm量级)等离子体区域(扩散迅速),脉宽缩短主要源于等离子体反射效应.In this paper, an electromagnetic-field FDTD method coupled with plasma fluid model is put forward to investigate the different physical phenomena of high power microwave (HPM) flashover and breakdown on inner and outer surface of output-window. Based on the above theoretical models, a one-dimensional (1D) electromagnetic field and plasma interaction code is programmed by authors. By using the code, the HPM flashover and breakdown on inner and outer surface of output-window are simulated. The numerical results could be concluded as follows. For flashover and breakdown on outer surface, output microwave pulse is shortened without cut-off; there is a standing-wave distribution of electric field RMS (Root-Mean-Square) value before the window with fixed-positions of wave nodes and antinodes; there is a ultra-high-density (~1021 m-3) and ultra-thin (~mm) plasma shell with slow diffusion, microwave could penetrate the plasma-shell partly; the shortening of output microwave is caused by plasma absorption mostly. The output pulse of microwave could be lengthened by reducing the initial density or depth of plasmas; the other way is to shorten incident microwave pulse or reduce the value of incident microwave power. For flashover and breakdown on inner surface, there is also a standing-wave distribution of electric field RMS value before the window but the positions of wave nodes and antinodes vary with time; the plasma region moves toward the microwave source; with strong-outgassing, output microwave pulse is shortened without cut-off, there are “thread-like” ultra-high-density (~ 1021 m-3) and ultra-thin (~mm) plasma regions with slow diffusion, the distance between two “thread-like” regions is about a quarter of microwave wavelength, the shortening of output microwave is caused by plasma absorption mostly; with weak-outgassing and low electric field value, the output pulse of microwave is lengthened but cut-off finally, there are “belt-like” high-density (~ 1018 m-3) and thin (mm-cm) plasma regions with fast diffusion, the distance between two “belt-like” region is about a quarter of microwave wavelength, the shortening of output microwave is caused by plasma absorption mostly; with weak-outgassing and high electric field value, output pulse of microwave is cut-off quickly, “block-like” diffuse ultra-high-density (~1021 m-3) and deep (~ cm) plasma regions are formed with very fast diffusion, and the shortening of output microwave is caused by plasma reflection mostly.
-
Keywords:
- high power microwave output-window /
- flashover and breakdown /
- electromagnetic-field finite difference in time domain method /
- plasma fluid model
[1] Barker R J, Schamiloglu E 2001 High-Power Microwaves Sources and Technologies (New Jersey: IEEE Press) pp325-375
[2] Neuber A A, Edmiston G F, Krile J T, Krompholz H, Dickens J C, Kristiansen M 2007 IEEE Trans. Magn. 43 496
[3] Stephens J, Beeson S, Dickens A, Neuber A 2012 Phys. Plasmas 19 112111
[4] Ford P J, Beeson S R, Krompholz H G, Neuber A A 2012 Phys. Plasmas 19 073503
[5] Kim H C, Verboncoeur J P 2005 Phys. Plasmas 12 123504
[6] Kim H C, Verboncoeur J P 2006 Phys. Plasmas 13 123506
[7] Chang C, Liu G, Tang C, Chen C, Fang J 2011 Phys. Plasmas 18 055702
[8] Cai L B, Wang J G 2009 Acta Phys. Sin. 58 3268(in Chinese)[蔡利兵, 王建国 2009 物理学报 58 3268]
[9] Hao X W, Song B P, Zhang G J, Qiu S, Huang W H, Qin F, Jin X 2012 High Power Laser and Particle Beams 24 16(in Chinese)[郝西伟, 宋佰鹏, 张冠军, 秋实, 黄文华, 秦风, 金晓 2012 强激光与粒子束 24 16]
[10] Zhang H B, Yang J H, Cheng G X, Li G L, Shu T 2013 High Power Laser and Particle Beams 25 1189(in Chinese)[张慧博, 杨建华, 程国新, 李国林, 舒挺 2013 强激光与粒子束 25 1189]
[11] Zhao P C, Liao C, Yang D, Zhong X M, Lin W B 2013 Acta Phys. Sin. 62 055101(in Chinese)[赵朋程, 廖成, 杨丹, 钟选明, 林文斌 2013 物理学报 62 055101]
[12] Dong Y, Dong Z W, Zhou Q H, Yang W Y, Zhou H J 2014 Acta Phys. Sin. 63 027901(in Chinese)[董烨, 董志伟, 周前红, 杨温渊, 周海京 2014 物理学报 63 027901]
[13] Nam S K, Verboncoeur J P 2008 Appl. Phys. Lett. 92 231502
[14] Nam S K, Verboncoeur J P 2008 Appl. Phys. Lett. 93 151504
[15] Zhou Q H, Dong Z W, Chen J Y 2011 Acta Phys. Sin. 60 125202(in Chinese)[周前红, 董志伟, 陈京元 2011 物理学报 60 125202]
[16] Hidaka Y, Choi E M, Mastovsky I, Shapiro M, Sirigiri J, Temkin R 2008 Phys. Rev. Lett. 100 035003
[17] Taflove A, Hagness S 2005 Computational Electrodynamics: The Finite-Difference Time-Domain Method (3rd Ed.) (Norwood: Artech House) pp51-105
[18] Ali A W 1988 Laser and Particle Beams. 6 105
[19] Dong Y, Dong Z W, Zhou Q H, Yang W Y, Zhou H J 2014 Acta Phys. Sin. 63 067901(in Chinese)[董烨, 董志伟, 周前红, 杨温渊, 周海京 2014 物理学报 63 067901]
-
[1] Barker R J, Schamiloglu E 2001 High-Power Microwaves Sources and Technologies (New Jersey: IEEE Press) pp325-375
[2] Neuber A A, Edmiston G F, Krile J T, Krompholz H, Dickens J C, Kristiansen M 2007 IEEE Trans. Magn. 43 496
[3] Stephens J, Beeson S, Dickens A, Neuber A 2012 Phys. Plasmas 19 112111
[4] Ford P J, Beeson S R, Krompholz H G, Neuber A A 2012 Phys. Plasmas 19 073503
[5] Kim H C, Verboncoeur J P 2005 Phys. Plasmas 12 123504
[6] Kim H C, Verboncoeur J P 2006 Phys. Plasmas 13 123506
[7] Chang C, Liu G, Tang C, Chen C, Fang J 2011 Phys. Plasmas 18 055702
[8] Cai L B, Wang J G 2009 Acta Phys. Sin. 58 3268(in Chinese)[蔡利兵, 王建国 2009 物理学报 58 3268]
[9] Hao X W, Song B P, Zhang G J, Qiu S, Huang W H, Qin F, Jin X 2012 High Power Laser and Particle Beams 24 16(in Chinese)[郝西伟, 宋佰鹏, 张冠军, 秋实, 黄文华, 秦风, 金晓 2012 强激光与粒子束 24 16]
[10] Zhang H B, Yang J H, Cheng G X, Li G L, Shu T 2013 High Power Laser and Particle Beams 25 1189(in Chinese)[张慧博, 杨建华, 程国新, 李国林, 舒挺 2013 强激光与粒子束 25 1189]
[11] Zhao P C, Liao C, Yang D, Zhong X M, Lin W B 2013 Acta Phys. Sin. 62 055101(in Chinese)[赵朋程, 廖成, 杨丹, 钟选明, 林文斌 2013 物理学报 62 055101]
[12] Dong Y, Dong Z W, Zhou Q H, Yang W Y, Zhou H J 2014 Acta Phys. Sin. 63 027901(in Chinese)[董烨, 董志伟, 周前红, 杨温渊, 周海京 2014 物理学报 63 027901]
[13] Nam S K, Verboncoeur J P 2008 Appl. Phys. Lett. 92 231502
[14] Nam S K, Verboncoeur J P 2008 Appl. Phys. Lett. 93 151504
[15] Zhou Q H, Dong Z W, Chen J Y 2011 Acta Phys. Sin. 60 125202(in Chinese)[周前红, 董志伟, 陈京元 2011 物理学报 60 125202]
[16] Hidaka Y, Choi E M, Mastovsky I, Shapiro M, Sirigiri J, Temkin R 2008 Phys. Rev. Lett. 100 035003
[17] Taflove A, Hagness S 2005 Computational Electrodynamics: The Finite-Difference Time-Domain Method (3rd Ed.) (Norwood: Artech House) pp51-105
[18] Ali A W 1988 Laser and Particle Beams. 6 105
[19] Dong Y, Dong Z W, Zhou Q H, Yang W Y, Zhou H J 2014 Acta Phys. Sin. 63 067901(in Chinese)[董烨, 董志伟, 周前红, 杨温渊, 周海京 2014 物理学报 63 067901]
计量
- 文章访问数: 5587
- PDF下载量: 517
- 被引次数: 0