搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超椭圆柱面梯度线圈设计

王亮 曹英晖 贾峰 刘震宇

引用本文:
Citation:

超椭圆柱面梯度线圈设计

王亮, 曹英晖, 贾峰, 刘震宇

Design of gradient coils on super-elliptical cylindrical surfaces

Wang Liang, Cao Ying-Hui, Jia Feng, Liu Zhen-Yu
PDF
导出引用
  • 超椭圆柱设计表面能够减小线圈与目标的距离, 提高空间利用率, 扩大成像区域的有效范围. 提出利用流函数法及柱面的可展性在超椭圆柱面上设计核磁共振成像系统中的梯度线圈. 根据Biot-Savart定律建立磁场强度与流函数的表达式, 采用最小二乘法和Tikhonov正则化方法构造了双目标设计函数. 利用柱面的可展性提高了基于分片离散流函数计算电磁场的数值精度, 通过L-曲线方法实现了正则参数的合理选取. 通过引入适当的流函数边界约束条件, 把梯度线圈的优化问题转化为适定线性方程组的直接求解问题. 通过数值算例验证了超椭圆柱面展开求解方法的正确性. 优化结果显示, 在满足线性度误差小于5 %的设计约束下, 该方法在设计超椭圆柱面线圈驱动电流分布的同时有效控制了梯度线圈的能耗.
    A super-elliptical cylinder surface can shorten the distance between coils and target, enhance the space utilization, and enlarge the homogeneous imaging volumes. This paper proposes a method to design magnetic resonance imaging (MRI) gradient coils using the stream function and the developable property of the super-elliptical cylindrical surface. Based on the Biot-Savart law, the relationship between the magnetic flux density and stream function is established firstly, and the objective is chosen in the least-square form with the additional Tikhonov regularization term. Numerical accuracy of the magnetic flux density in the region of interest is maintained through transforming the cylindrical surface to the corresponding flat surface, and the value of regularization coefficient of the dissipated powers is chosen automatically by using the L-curve method. Via imposing specified boundary conditions to the stream function on the developed surface, the optimization of gradient coils is gained by directly solving well-posed linear algebraic equations. Numerical examples illustrate the feasibility of the proposed design method. The designed coils on the super-elliptical cylindrical surface show that the electric current and the dissipated powers are adequately optimized under the condition that the linear gradient deviation is less than 5%.
    • 基金项目: 国家自然科学基金(批准号:51275504)、吉林省科技发展计划(批准号:20140519007JH)和欧盟研究署‘RANGEMRI'启动项目(批准号:282345)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51275504), the Science and Technology Development Plan of Jilin Province, China (Grant No. 20140519007JH), and the European Research Council Starting Grant ‘RANGEMRI' (Grant No. 282345).
    [1]

    Xu Y, Liang B L 2009 Medical Imaging Equipment (Beijing: People's Medical Publishing House) pp162-195 (in Chinese) [徐跃, 梁碧玲 2009 医学影像设备学(北京: 人民卫生出版社)第162–195 页]

    [2]

    Wang H Z, Zhang X L, Wu J 2008 Experiment Study of Magnetic Resonance Imaging (Beijing: Science Press) pp3-29 (in Chinese) [汪红志, 张学龙, 武杰2008核磁共振成像技术试验教程(北京: 科学出版社)第3–29页]

    [3]

    Turner R 1986 J. Phys. D: Appl. Phys. 19 L147

    [4]

    Alsop D C, Connick T J 1996 Magn. Reson. Med. 35 875

    [5]

    Liu Z Y, Jia F, Hennig J, Korvink J G 2012 IEEE Trans. Magn. 48 1179

    [6]

    Liu W T, Zu D L, Tang X 2010 Chin. Phys. B 19 018701

    [7]

    Poole M, Bowtell R 2007 Concepts Magn. Reson. B: Magn. Reson. Eng. 31B 162

    [8]

    Peeren G N 2003 J. Comput. Phys. 191 305

    [9]

    Tomasi D 2001 Magn. Reson. Med. 45 505

    [10]

    Jia F, Liu Z Y, Zaitsev M, Hennig J, Korvink J 2014 Struct. Multidis. Optim. 49 523

    [11]

    Pissanetzky S 1992 Meas. Sci. Technol. 3 667

    [12]

    Liu H Y 1998 IEEE Trans. Magn. 34 2162

    [13]

    Tomasi D, Caparelli E C, Panepucci H, Foerster B 1999 J. Magn. Reson. 140 325

    [14]

    Liu W T, Zu D L, Tang X, Guo H 2007 J. Phys. D: Appl. Phys. 40 4418

    [15]

    Zhu M H, Xia L, Liu F, Crozier S 2008 IEEE Trans. Magn. 44 2035

    [16]

    Feng Z K, Hu G L, Xu Y, Zhu G, Zhou F, Dai Y M, Wang Q L 2013 Acta Phys. Sin. 62 230701 (in Chinese) [冯忠奎, 胡格丽, 许莹, 朱光, 周峰, 戴银明, 王秋良 2013 物理学报 62 230701]

    [17]

    Forbes L K, Brideson M A, Crozier S 2005 IEEE Trans. Magn. 41 2134

    [18]

    Wang L Q, Wang W M 2014 Chin. Phys. B 23 028703

    [19]

    Moon S M, Goodrich K C, Hadley J R, Parker D L 2009 Concepts Magn. Reson. B: Magn. Reson. Eng. 35B 23

    [20]

    Moon S M, Goodrich K C, Hadley J R, Kim S, Zeng G L, Morrell G R, McAlpine M A, Chronik B A, Parker D L 2011 Magn. Reson. Med. 65 863

    [21]

    Brideson M A, Forbes L K, Crozier S 2002 Concepts Magn. Reson. 14 9

    [22]

    Barr A H 1981 IEEE Comput. Graph. Appl. 1 11

    [23]

    Franklin W R, Barr A H 1981 IEEE Comput. Graph. Appl. 1 41

    [24]

    Pilu M, Fisher R 1995 Proceedings of the British Machine Vision Conference Birmingham, British, September 11-14, 1995 p257

    [25]

    Jackson J D 1998 Classical Electrodynamics (New York: Wiley) pp174-224

    [26]

    Ungersma S E, Xu H, Chronik B A, Scott G C, Macovski A, Conolly S M 2004 Magn. Reson. Med. 52 619

    [27]

    Shi F, Ludwig R 1998 IEEE Trans. Magn. 34 671

    [28]

    Cheng Y P, Zhang K Y, Xu Z 1989 The Theory of Matrices (Xi'an: Northwestern Polytechnical University Press) pp360-370 (in Chinese) [程云鹏, 张凯院, 徐仲1989矩阵论(西安: 西北工业大学出版社)第360–370页]

    [29]

    Hu G L, Ni Z P, Wang Q L 2014 Acta Phys. Sin. 63 018301 (in Chinese) [胡格丽, 倪志鹏, 王秋良 2014 物理学报 63 018301]

    [30]

    Xu W L, Zhang J C, Li X, Xu B Q, Tao G S 2013 Chin. Phys. B 22 010203

    [31]

    Li Q Y, Wang N C, Yi D Y 2008 Numerical Analysis (Beijing: TsingHua University Press) pp202-208 (in Chinese) [李庆阳, 王能超, 易大义2008数值分析(北京: 清华大学出版社)第202–208页]

    [32]

    Hansen P C, Nagy J G, O'Leary D P 2006 Deblurring Images: Matrices, Spectra, and Filtering (Philadelphia: Society for Industrial and Applied Mathematics) pp71-100

    [33]

    Hansen P C 1994 Numer. Algorithms. 6 1

  • [1]

    Xu Y, Liang B L 2009 Medical Imaging Equipment (Beijing: People's Medical Publishing House) pp162-195 (in Chinese) [徐跃, 梁碧玲 2009 医学影像设备学(北京: 人民卫生出版社)第162–195 页]

    [2]

    Wang H Z, Zhang X L, Wu J 2008 Experiment Study of Magnetic Resonance Imaging (Beijing: Science Press) pp3-29 (in Chinese) [汪红志, 张学龙, 武杰2008核磁共振成像技术试验教程(北京: 科学出版社)第3–29页]

    [3]

    Turner R 1986 J. Phys. D: Appl. Phys. 19 L147

    [4]

    Alsop D C, Connick T J 1996 Magn. Reson. Med. 35 875

    [5]

    Liu Z Y, Jia F, Hennig J, Korvink J G 2012 IEEE Trans. Magn. 48 1179

    [6]

    Liu W T, Zu D L, Tang X 2010 Chin. Phys. B 19 018701

    [7]

    Poole M, Bowtell R 2007 Concepts Magn. Reson. B: Magn. Reson. Eng. 31B 162

    [8]

    Peeren G N 2003 J. Comput. Phys. 191 305

    [9]

    Tomasi D 2001 Magn. Reson. Med. 45 505

    [10]

    Jia F, Liu Z Y, Zaitsev M, Hennig J, Korvink J 2014 Struct. Multidis. Optim. 49 523

    [11]

    Pissanetzky S 1992 Meas. Sci. Technol. 3 667

    [12]

    Liu H Y 1998 IEEE Trans. Magn. 34 2162

    [13]

    Tomasi D, Caparelli E C, Panepucci H, Foerster B 1999 J. Magn. Reson. 140 325

    [14]

    Liu W T, Zu D L, Tang X, Guo H 2007 J. Phys. D: Appl. Phys. 40 4418

    [15]

    Zhu M H, Xia L, Liu F, Crozier S 2008 IEEE Trans. Magn. 44 2035

    [16]

    Feng Z K, Hu G L, Xu Y, Zhu G, Zhou F, Dai Y M, Wang Q L 2013 Acta Phys. Sin. 62 230701 (in Chinese) [冯忠奎, 胡格丽, 许莹, 朱光, 周峰, 戴银明, 王秋良 2013 物理学报 62 230701]

    [17]

    Forbes L K, Brideson M A, Crozier S 2005 IEEE Trans. Magn. 41 2134

    [18]

    Wang L Q, Wang W M 2014 Chin. Phys. B 23 028703

    [19]

    Moon S M, Goodrich K C, Hadley J R, Parker D L 2009 Concepts Magn. Reson. B: Magn. Reson. Eng. 35B 23

    [20]

    Moon S M, Goodrich K C, Hadley J R, Kim S, Zeng G L, Morrell G R, McAlpine M A, Chronik B A, Parker D L 2011 Magn. Reson. Med. 65 863

    [21]

    Brideson M A, Forbes L K, Crozier S 2002 Concepts Magn. Reson. 14 9

    [22]

    Barr A H 1981 IEEE Comput. Graph. Appl. 1 11

    [23]

    Franklin W R, Barr A H 1981 IEEE Comput. Graph. Appl. 1 41

    [24]

    Pilu M, Fisher R 1995 Proceedings of the British Machine Vision Conference Birmingham, British, September 11-14, 1995 p257

    [25]

    Jackson J D 1998 Classical Electrodynamics (New York: Wiley) pp174-224

    [26]

    Ungersma S E, Xu H, Chronik B A, Scott G C, Macovski A, Conolly S M 2004 Magn. Reson. Med. 52 619

    [27]

    Shi F, Ludwig R 1998 IEEE Trans. Magn. 34 671

    [28]

    Cheng Y P, Zhang K Y, Xu Z 1989 The Theory of Matrices (Xi'an: Northwestern Polytechnical University Press) pp360-370 (in Chinese) [程云鹏, 张凯院, 徐仲1989矩阵论(西安: 西北工业大学出版社)第360–370页]

    [29]

    Hu G L, Ni Z P, Wang Q L 2014 Acta Phys. Sin. 63 018301 (in Chinese) [胡格丽, 倪志鹏, 王秋良 2014 物理学报 63 018301]

    [30]

    Xu W L, Zhang J C, Li X, Xu B Q, Tao G S 2013 Chin. Phys. B 22 010203

    [31]

    Li Q Y, Wang N C, Yi D Y 2008 Numerical Analysis (Beijing: TsingHua University Press) pp202-208 (in Chinese) [李庆阳, 王能超, 易大义2008数值分析(北京: 清华大学出版社)第202–208页]

    [32]

    Hansen P C, Nagy J G, O'Leary D P 2006 Deblurring Images: Matrices, Spectra, and Filtering (Philadelphia: Society for Industrial and Applied Mathematics) pp71-100

    [33]

    Hansen P C 1994 Numer. Algorithms. 6 1

  • [1] 臧雨宸, 林伟军, 苏畅, 吴鹏飞. Gauss声束对离轴椭圆柱的声辐射力矩. 物理学报, 2021, 70(8): 084301. doi: 10.7498/aps.70.20201635
    [2] 赵超樱, 范钰婷, 孟义朝, 郭奇志, 谭维翰. 圆柱型光纤螺线圈轨道角动量模式. 物理学报, 2020, 69(5): 054207. doi: 10.7498/aps.69.20190997
    [3] 张兴坊, 刘凤收, 闫昕, 梁兰菊, 韦德全. 同心椭圆柱-纳米管结构的双重Fano共振研究. 物理学报, 2019, 68(6): 067301. doi: 10.7498/aps.68.20182249
    [4] 黄清明, 陈珊珊, 张建青, 杨洋, 郑刚. 基于目标场点法和流函数的磁共振有源匀场线圈设计方法. 物理学报, 2019, 68(19): 198301. doi: 10.7498/aps.68.20190612
    [5] 谢元栋. 各向异性海森伯自旋链中的超椭圆函数波解. 物理学报, 2018, 67(19): 197502. doi: 10.7498/aps.67.20181005
    [6] 谭志中, 张庆华. 基于递推-变换方法计算圆柱面网络的等效电阻及复阻抗. 物理学报, 2017, 66(7): 070501. doi: 10.7498/aps.66.070501
    [7] 潘辉, 王亮, 王强龙, 陈利民, 贾峰, 刘震宇. 基于Pareto优化理论的多目标超椭梯度线圈设计. 物理学报, 2017, 66(9): 098301. doi: 10.7498/aps.66.098301
    [8] 陈植, 易仕和, 朱杨柱, 何霖, 全鹏程. 强梯度复杂流场中的粒子动力学响应试验研究. 物理学报, 2014, 63(18): 188301. doi: 10.7498/aps.63.188301
    [9] 胡格丽, 倪志鹏, 王秋良. 结合振动控制的柱面纵向梯度线圈目标场设计方法. 物理学报, 2014, 63(1): 018301. doi: 10.7498/aps.63.018301
    [10] 范孟豹, 尹亚丹, 曹丙花. 基于截断区域特征函数展开法的金属管材电涡流检测线圈阻抗解析模型. 物理学报, 2012, 61(8): 088105. doi: 10.7498/aps.61.088105
    [11] 王战, 董建峰, 刘锦景, 罗孝阳. 基于线变换的椭圆柱外隐身斗篷的设计研究. 物理学报, 2012, 61(20): 204101. doi: 10.7498/aps.61.204101
    [12] 高东宝, 曾新吾. 基于各向同性材料的层状椭圆柱形声隐身衣设计. 物理学报, 2012, 61(18): 184301. doi: 10.7498/aps.61.184301
    [13] 陆赫林, 王顺金. 离子温度梯度模湍流的带状流最小自由度模型. 物理学报, 2009, 58(1): 354-362. doi: 10.7498/aps.58.354
    [14] 沈 杰, 宁瑞鹏, 刘 颖, 李鲠颖. 一种减小梯度线圈产生的涡流的方法. 物理学报, 2006, 55(6): 3060-3066. doi: 10.7498/aps.55.3060
    [15] 谢本超, 卢振武, 李凤有. 近柱面中频面形检测中曲面拟合法精度问题研究. 物理学报, 2005, 54(7): 3144-3148. doi: 10.7498/aps.54.3144
    [16] 张超英, 李华兵, 谭惠丽, 刘慕仁, 孔令江. 椭圆柱体在牛顿流体中运动的格子Boltzmann方法模拟. 物理学报, 2005, 54(5): 1982-1987. doi: 10.7498/aps.54.1982
    [17] 侯春风, 郭汝海. 椭圆柱形量子点的能级结构. 物理学报, 2005, 54(5): 1972-1976. doi: 10.7498/aps.54.1972
    [18] 孙久勋. 严格可解四参数双原子分子势函数. 物理学报, 1999, 48(11): 1992-1998. doi: 10.7498/aps.48.1992
    [19] 王红艳, 高 涛, 易有根, 谭明亮, 朱正和, 傅依备, 汪小琳, 孙 颖. UO2分子的多体项展式势能函数. 物理学报, 1999, 48(12): 2215-2221. doi: 10.7498/aps.48.2215
    [20] 林为干, 林炎武. 载直流椭圆柱内场的直接积分求解法. 物理学报, 1964, 20(6): 571-575. doi: 10.7498/aps.20.571
计量
  • 文章访问数:  7459
  • PDF下载量:  506
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-10
  • 修回日期:  2014-07-31
  • 刊出日期:  2014-12-05

/

返回文章
返回