搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于外光注入互耦合垂直腔面发射激光器的混沌随机特性研究

刘庆喜 潘炜 张力月 李念强 阎娟

引用本文:
Citation:

基于外光注入互耦合垂直腔面发射激光器的混沌随机特性研究

刘庆喜, 潘炜, 张力月, 李念强, 阎娟

Chaotic randomness of mutually coupled vertical-cavity surface-emitting laser by optical injection

Liu Qing-Xi, Pan Wei, Zhang Li-Yue, Li Nian-Qiang, Yan Juan
PDF
导出引用
  • 通过在互耦合垂直腔面发射激光器(VCSELs)系统中增加外光注入, 建立了一种基于偏振可调光反馈VCSEL驱动互耦合VCSELs混沌系统模型, 分析了增加外光驱动对互耦合激光器随机特性的影响. 以不可预测度作为随机特性的评价指标, 采用信息论中的排列熵作为相应量化工具, 对系统输出混沌信号的不可预测性进行定量分析.数值研究了光强度、时延、偏振旋转角度以及驱动激光器与耦合激光器间的频率失谐对输出信号随机特性的影响.结果表明: 外光注入能够增大互耦合VCSELs输出混沌信号的排列熵, 即外光注入能够有效提高耦合系统的随机特性; 驱动激光器可调偏振片偏转角度调节到45° 附近, 注入强度适中, 满足耦合强度大于驱动激光器自反馈强度条件, 系统输出信号的排列熵较大; 在耦合时延与驱动激光器反馈时延不相等的同时, 增加驱动激光器与耦合激光器频率失谐, 外光注入互耦合VCSELs的随机特性能够得到进一步提高.
    In this paper, a randomness-enhanced chaotic system model of mutually coupled vertical-cavity surface-emitting lasers (VCSELs) is established by adding anothor injected VCSEL with variable polarizer optical feedback (VPOF). The randomness of chaotic signals is evaluated quantitatively by an information-theory-based quantifier, the permutation entropy (PE). The influences of VPOF-VCSEL rotating polarizer degree, feedback strength, injection strength, mutual coupling strength, path time delay and frequency detuning about injected VCSEL and coupled VCSELs on chaotic signal permutation entropy are numerically studied. It is shown that the chaotic signal permutation entropy of mutually coupled VCSEL system driven by the third VCSEL is much higher than the mutual system with no-driving VCSEL. That is to say, the randomness of coupled system chaotic signal can be enhanced by optical injection. When the rotating polarizer degree is approximately 45 degrees and the injection strength is saturated at a constant level, the system PE can be increased by coupled strength, which is set to be higher than feedback strength. In addition, unequal delay time between both coupled time and feedback time, and higher detuning frequency between driving VCSEL and coupled VCSELs can contribute to randomness-enhanced chaotic signals.
    • 基金项目: 国家自然科学基金(批准号: 61274042)和四川省基础研究项目(批准号: 2011JY0030)资助的课题.
    • Funds: Project supported by the National Science Foundation of China (Grant No. 61274042) and the Basic Research Program of Sichuan Province, China (Grant No. 2011JY0030).
    [1]

    Vicente R, Mirasso R, Fischer I 2007 Opt. Lett. 32 403

    [2]

    Zhao Q C, Wang Y C 2010 Lasers Optoelectron. Prog. 47 030602 (in Chinese) [赵清春, 王云才 2010 激光与光电子学进展 47 030602]

    [3]

    Sukow D W, Gavrielides A, Erneux T, Mooneyham B, Lee K 2010 Phys. Rev. A 81 025206

    [4]

    Yan S L 2011 Acta Phys. Sin. 60 050509 (in Chinese) [颜森林 2011 物理学报 60 050509]

    [5]

    Zhang J, Yu J L, Cheng S Y, Lai Y F, Chen Y H 2014 Chin. Phys. B 23 027304

    [6]

    Someya H, Oowada I, Okumura H, Kida T, Uchida A 2009 Opt. Express 17 19536

    [7]

    Oliver N, Soriano M C, Sukow D W, Fischer I 2011 Opt. Lett. 36 4632

    [8]

    Tang X, Wu J G, Xia G Q, Wu Z M 2011 Acta Phys. Sin. 60 110509 (in Chinese) [唐曦, 吴加贵, 夏光琼, 吴正茂 2011 物理学报 60 110509]

    [9]

    Tlidi M, Averlant E, Vladimirov A, Panajotov K 2012 Phys. Rev. A 86 033822

    [10]

    Zhang W L 2008 Ph. D. Dissertation (Chengdu: Southwest Jiaotong University) (in Chinese) [张伟利 2008 博士学位论文(成都: 西南交通大学)]

    [11]

    Wu J, Cui H Y, Huang M, Ma M L 2013 Chin. Phys. B 22 124203

    [12]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 4102

    [13]

    Bandt C, Keller G, Pompe B 2002 Nonlinearity 15 1595

    [14]

    Zunino L, Pérez D G, Martín M T, Garavaglia M, Plastino A, Rosso O A 2008 Phys. Lett. A 372 4768

    [15]

    Tiana-Alsina J, Torrent M C, Rosso O A, Masoller C, Garcia-Ojalvo J 2010 Phys. Rev. A 82 013819

    [16]

    Soriano M C, Zunino L, Rosso O A, Fischer I, Mirasso C R 2011 IEEE J. Quantum Electron. 47 252

    [17]

    Xiang S Y, Pan W, Li N Q, Yan L S, Zhang L 2013 IEEE J. Quantum Electron. 49 274

    [18]

    Cao T, Xu C, Xie Y Y, Kan Q, Wei S M, Mao M M, Chen H D 2013 Chin. Phys. B 22 024205

    [19]

    Zheng A J, Wu Z M, Deng T, Li X J, Xia G Q 2012 Acta Phys. Sin. 61 234203 (in Chinese) [郑安杰, 吴正茂, 邓涛, 李小坚, 夏光琼 2012 物理学报 61 234203]

    [20]

    Wang X F, Li J 2013 Acta Phys. Sin. 62 014203 (in Chinese) [王小发, 李骏 2013 物理学报 62 014203]

    [21]

    Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728

    [22]

    Jiang N, Pan W, Yan L S, Luo B, Zhang W L 2010 IEEE/OSA J. Lightw. Technol. 28 1978

    [23]

    Martin-Regalado J, Prati F, Miguel M S, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [24]

    Sciamanna M, Gatare I, Locquet A, Panajotov K 2007 Phys. Rev. E 75 056213

  • [1]

    Vicente R, Mirasso R, Fischer I 2007 Opt. Lett. 32 403

    [2]

    Zhao Q C, Wang Y C 2010 Lasers Optoelectron. Prog. 47 030602 (in Chinese) [赵清春, 王云才 2010 激光与光电子学进展 47 030602]

    [3]

    Sukow D W, Gavrielides A, Erneux T, Mooneyham B, Lee K 2010 Phys. Rev. A 81 025206

    [4]

    Yan S L 2011 Acta Phys. Sin. 60 050509 (in Chinese) [颜森林 2011 物理学报 60 050509]

    [5]

    Zhang J, Yu J L, Cheng S Y, Lai Y F, Chen Y H 2014 Chin. Phys. B 23 027304

    [6]

    Someya H, Oowada I, Okumura H, Kida T, Uchida A 2009 Opt. Express 17 19536

    [7]

    Oliver N, Soriano M C, Sukow D W, Fischer I 2011 Opt. Lett. 36 4632

    [8]

    Tang X, Wu J G, Xia G Q, Wu Z M 2011 Acta Phys. Sin. 60 110509 (in Chinese) [唐曦, 吴加贵, 夏光琼, 吴正茂 2011 物理学报 60 110509]

    [9]

    Tlidi M, Averlant E, Vladimirov A, Panajotov K 2012 Phys. Rev. A 86 033822

    [10]

    Zhang W L 2008 Ph. D. Dissertation (Chengdu: Southwest Jiaotong University) (in Chinese) [张伟利 2008 博士学位论文(成都: 西南交通大学)]

    [11]

    Wu J, Cui H Y, Huang M, Ma M L 2013 Chin. Phys. B 22 124203

    [12]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 4102

    [13]

    Bandt C, Keller G, Pompe B 2002 Nonlinearity 15 1595

    [14]

    Zunino L, Pérez D G, Martín M T, Garavaglia M, Plastino A, Rosso O A 2008 Phys. Lett. A 372 4768

    [15]

    Tiana-Alsina J, Torrent M C, Rosso O A, Masoller C, Garcia-Ojalvo J 2010 Phys. Rev. A 82 013819

    [16]

    Soriano M C, Zunino L, Rosso O A, Fischer I, Mirasso C R 2011 IEEE J. Quantum Electron. 47 252

    [17]

    Xiang S Y, Pan W, Li N Q, Yan L S, Zhang L 2013 IEEE J. Quantum Electron. 49 274

    [18]

    Cao T, Xu C, Xie Y Y, Kan Q, Wei S M, Mao M M, Chen H D 2013 Chin. Phys. B 22 024205

    [19]

    Zheng A J, Wu Z M, Deng T, Li X J, Xia G Q 2012 Acta Phys. Sin. 61 234203 (in Chinese) [郑安杰, 吴正茂, 邓涛, 李小坚, 夏光琼 2012 物理学报 61 234203]

    [20]

    Wang X F, Li J 2013 Acta Phys. Sin. 62 014203 (in Chinese) [王小发, 李骏 2013 物理学报 62 014203]

    [21]

    Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728

    [22]

    Jiang N, Pan W, Yan L S, Luo B, Zhang W L 2010 IEEE/OSA J. Lightw. Technol. 28 1978

    [23]

    Martin-Regalado J, Prati F, Miguel M S, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [24]

    Sciamanna M, Gatare I, Locquet A, Panajotov K 2007 Phys. Rev. E 75 056213

  • [1] 闫观鑫, 郝永芹, 张秋波. 高功率垂直腔面发射激光器阵列热特性. 物理学报, 2024, 73(5): 054204. doi: 10.7498/aps.73.20231614
    [2] 潘智鹏, 李伟, 吕家纲, 聂语葳, 仲莉, 刘素平, 马骁宇. 940 nm 垂直腔面发射激光器单管器件的设计与制备. 物理学报, 2023, 72(11): 114203. doi: 10.7498/aps.72.20230297
    [3] 张竣珲, 樊利, 吴正茂, 苟宸豪, 骆阳, 夏光琼. 基于光注入下脉冲电流调制1550 nm 垂直腔面发射激光器获取宽带可调谐光学频率梳. 物理学报, 2023, 72(1): 014207. doi: 10.7498/aps.72.20221709
    [4] 王志鹏, 关宝璐, 张峰, 杨嘉炜. 内腔亚波长光栅液晶可调谐垂直腔面发射激光器. 物理学报, 2021, 70(22): 224208. doi: 10.7498/aps.70.20210957
    [5] 张福领, 付丽珊, 胡丕丽, 韩文杰, 王宏卓, 张峰, 关宝璐. 795 nm亚波长光栅耦合腔垂直腔面发射激光器的超窄线宽特性. 物理学报, 2021, 70(22): 224207. doi: 10.7498/aps.70.20210293
    [6] 张浩, 郭星星, 项水英. 基于单向注入垂直腔面发射激光器系统的密钥分发. 物理学报, 2018, 67(20): 204202. doi: 10.7498/aps.67.20181038
    [7] 周广正, 尧舜, 于洪岩, 吕朝晨, 王青, 周天宝, 李颖, 兰天, 夏宇, 郎陆广, 程立文, 董国亮, 康联鸿, 王智勇. 高速850 nm垂直腔面发射激光器的优化设计与外延生长. 物理学报, 2018, 67(10): 104205. doi: 10.7498/aps.67.20172550
    [8] 苏斌斌, 陈建军, 吴正茂, 夏光琼. 混沌光注入垂直腔面发射激光器混沌输出的时延和带宽特性. 物理学报, 2017, 66(24): 244206. doi: 10.7498/aps.66.244206
    [9] 杨峰, 唐曦, 钟祝强, 夏光琼, 吴正茂. 基于偏振旋转耦合1550 nm垂直腔面发射激光器环形系统产生多路高质量混沌信号. 物理学报, 2016, 65(19): 194207. doi: 10.7498/aps.65.194207
    [10] 关宝璐, 刘欣, 江孝伟, 刘储, 徐晨. 多横模垂直腔面发射激光器及其波长特性. 物理学报, 2015, 64(16): 164203. doi: 10.7498/aps.64.164203
    [11] 邓伟, 夏光琼, 吴正茂. 基于双光反馈垂直腔面发射激光器的双信道混沌同步通信. 物理学报, 2013, 62(16): 164209. doi: 10.7498/aps.62.164209
    [12] 毛明明, 徐晨, 魏思民, 解意洋, 刘久澄, 许坤. 质子注入能量对垂直腔面发射激光器的阈值和功率的影响. 物理学报, 2012, 61(21): 214207. doi: 10.7498/aps.61.214207
    [13] 刘发, 徐晨, 赵振波, 周康, 解意洋, 毛明明, 魏思民, 曹田, 沈光地. 氧化孔形状对光子晶体垂直腔面发射激光器模式的影响. 物理学报, 2012, 61(5): 054203. doi: 10.7498/aps.61.054203
    [14] 马雅男, 罗斌, 潘炜, 闫连山, 邹喜华, 易安林, 叶佳, 温坤华, 郑狄. 垂直腔面发射激光器的饱和效应对慢光延时影响的研究. 物理学报, 2012, 61(1): 014215. doi: 10.7498/aps.61.014215
    [15] 李硕, 关宝璐, 史国柱, 郭霞. 亚波长光栅调制的偏振稳定垂直腔面发射激光器研究. 物理学报, 2012, 61(18): 184208. doi: 10.7498/aps.61.184208
    [16] 郝永芹, 冯源, 王菲, 晏长岭, 赵英杰, 王晓华, 王玉霞, 姜会林, 高欣, 薄报学. 808nm大孔径垂直腔面发射激光器研究. 物理学报, 2011, 60(6): 064201. doi: 10.7498/aps.60.064201
    [17] 关宝璐, 张敬兰, 任秀娟, 郭帅, 李硕, 揣东旭, 郭霞, 沈光地. 具有宽调谐范围的微纳光机电系统可调谐垂直腔面发射激光器研究. 物理学报, 2011, 60(3): 034206. doi: 10.7498/aps.60.034206
    [18] 杨 浩, 郭 霞, 关宝璐, 王同喜, 沈光地. 注入电流对垂直腔面发射激光器横模特性的影响. 物理学报, 2008, 57(5): 2959-2965. doi: 10.7498/aps.57.2959
    [19] 彭红玲, 韩 勤, 杨晓红, 牛智川. 1.3μm量子点垂直腔面发射激光器高频响应的优化设计. 物理学报, 2007, 56(2): 863-870. doi: 10.7498/aps.56.863
    [20] 赵红东, 康志龙, 王胜利, 陈国鹰, 张以谟. 高速调制响应垂直腔面发射激光器中的微腔效应. 物理学报, 2003, 52(1): 77-80. doi: 10.7498/aps.52.77
计量
  • 文章访问数:  5041
  • PDF下载量:  478
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-16
  • 修回日期:  2014-07-15
  • 刊出日期:  2015-01-05

/

返回文章
返回