搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向纳米电路的改进型卷积核可制造性模型建模研究

杨祎巍 张宏博 李斌

引用本文:
Citation:

面向纳米电路的改进型卷积核可制造性模型建模研究

杨祎巍, 张宏博, 李斌

Improved convolution kernel based DFM model for nano-scale circuits

Yang Yi-Wei, Zhang Hong-Bo, Li Bin
PDF
导出引用
  • 囿于材料和工艺稳定性等原因, 纳米级集成电路制造依然基于193 nm激发光的工艺, 光刻波长远大于版图尺寸, 使得制造中光的干涉和衍射现象极大降低了分辨率, 影响了芯片质量, 因此版图在制造前需要使用可制造性模型进行查错. 传统模型对制造过程进行物理建模, 通过对模型中的矩阵进行分解得到卷积核, 所使用的物理模型不仅复杂, 而且应用难度高, 加之还有物理模型缺失的情况, 因此难以描述具有上千参数的生产线. 本文使用卷积的形式作为可制造性模型的框架, 通过优化算法提取版图到硅片轮廓这一过程的信息并以卷积核的形式体现出来, 卷积核中的每一个元素均为根据已知的生产线输入输出数据优化得出, 是描述制造过程的一个维度. 该模型克服了传统模型需要工艺参数等机密信息的缺陷, 同时具有更强的描述制造过程的能力; 模型甚至可以包含版图校正信息, 描述从版图到硅片轮廓这一全流程. 该模型在65 nm工艺下的实验结果表明该模型具有8 nm的精度.
    Limited by materials and process stability, the nano-scale IC manufacturing process is still based on the 193 nm light technology and the wavelength is larger than the feature size of layout, thus the induced interference and diffraction greatly reduce the resolution, which affect the quality of the chip. So the layout needs to be checked by the design-for-manufacturability (DfM) model before manufacturing. Traditional DfM models describe the process steps using physical models, and deduce the convolution kernels by decomposing the matrix in corresponding physical models, which are not only complicated but also hard to use; thus combined with the insufficiency of physical models, it is difficult to describe the process with thousands of parameters. This paper uses convolution form as the framework of DfM model, and deduces the relationship, represented as convolution kernels, between layout and contour by an optimization method. Every element in the convolution kernels is optimized based on the input and output data of the process and is also a dimension to describe the process. This model overcomes the disadvantages of the traditional model which needs confidential information such as process parameters, and it has more powerful capability to describe the process. Moreover, the model can contain the layout correction information, and describe the process from layout to contour. Experiment results for 65 nm process show that the model has an accuracy of 8 nm.
    • 基金项目: 中央高校基本科研业务费(批准号: 2013ZM0015)资助的课题.
    • Funds: Project supported by the Fundamental Research Fund for the Central Universities of China (Grant No. 2013ZM0015).
    [1]

    www.itrs.net

    [2]

    Tian X B, Xu H, Li Q J 2013 Chin. Phys. B 22 088502

    [3]

    Fang X D, Tang Y H, Wu J J, Zhu X, Zhou J, Huang D 2013 Chin. Phys. B 22 078901

    [4]

    Cai D L, Song Z T, Li X, Chen H P, Chen X G 2011 Chin. Phys. Lett. 28 018501

    [5]

    Zhu Z M, Li R, Hao B T, Yang Y T 2009 Chin. Phys. B 18 4995

    [6]

    Cobb N B, Avideh Zakhor 1995 15th Annual BACUS Symposium on Photomask Technology and Management Santa Clara, CA, September 20, 1995 p534

    [7]

    Cobb N, Dudau D 2006 Proc. SPIE 6154, Optical Microlithography XIX San Jose, CA, February 19, 2006 p61540I

    [8]

    Jaione T A, Alan E R, Timothy B 2014 J. Micro/Nanolith. MEMS MOEMS. 13 023014

    [9]

    Lori A J, Michael T R, Jason D, Christiane J 2002 Proc. SPIE 4691, Optical Microlithography XV Santa Clara, CA, March 03, 2002 p861

    [10]

    Bouton G, Connolly B, Courboin D, Di Giacomo A, Gasnier F, Lallement R, Parker D, Pindo M, Richoilley J C, Royere F, Rameau-Savio A, Tissier M 2011 27th European Mask and Lithography Conference Dresden, Germany, January 18, 2011 p79850R

    [11]

    Carau D, Bouyssou R, Dezauzier C, Besacier M, Gourgon C 2014 Optical Micro-and Nanometrology V Brussels, Belgium, April 14, 2014 p91320D

    [12]

    Michael Hyatt, Karen Huang, Anton DeVilliers, Mark Slezak, Zhi Liu 2014 Advances in Patterning Materials and Processes XXXI San Jose, California, USA, February 23, 2014 p905118

    [13]

    Drapeau M, Wiaux V, Hendrickx E, Verhaegen S, Machida T 2007 Conference on Design for Manufacturability through Design-Process Integration San Jose, CA 2007 p652109

    [14]

    Ghaida R S, Torres G, Gupta, P 2011 Semiconductor Manufacturing, IEEE Transactions on 24 93

    [15]

    Poonawala A, Milanfar P 2007 Image Processing, IEEE Transactions on 16 774

    [16]

    Alexandre Villaret, Alexander Tritchkov, Jorge Entradas, Emek Yesilada 2013 Optical Microlithography XXVI San Jose, California, USA, February 24, 2013 p86830E

    [17]

    Lv W, Xia Q, Liu S Y 2013 J. MicroNanolith. Mems Moems 12 043003

    [18]

    Wang J P, Qi S Y, Liu S G 2014 Acta Phys. Sin. 63 128503 (in Chinese) [王俊平, 戚苏阳, 刘士钢 2014 物理学报 63 128503]

    [19]

    Kong JT 2004 IEEE Transactions on VLSI Systems 12 1132

    [20]

    Zhang Z M, Xiao P, Sun X, Ding Z J 2006 Acta Phys. Sin. 55 5803 (in Chinese) [张增明, 肖沛, 孙霞, 丁泽军 2006 物理学报 55 5803]

    [21]

    Mazen Saied, Franck Foussadier, Jérô me Belledent, Yorick Trouiller, Isabelle Schanen, Emek Yesilada, Christian Gardin, Jean Christophe Urbani, Frank Sundermann, Frédéric Robert, Christophe Couderc, Florent Vautrin, Laurent LeCam, Gurwan Kerrien, Jonathan Planchot, Catherine Martinelli, Bill Wilkinson, Yves Rody, Amandine Borjon, Nicolo Morgana, Jean-Luc Di-Maria, Vincent Farys 2007 Photomask Technology 2007 Monterey, CA, September 17, 2007 p673050

    [22]

    Viviana Agudelo, Tim Fhner, Andreas Erdmann, Peter Evanschitzky 2013 J. MicroNanolith. MEMS MOEMS. 13 011002

    [23]

    Chen D L, Cao Y P, Huang Z F 2011 Chin. Phys. Lett. 28 068503

    [24]

    Ye Chen, Zheng Shi, Ke Zhou, Yue Ma, Shanhu Shen, Xiaolang Yan 2006 Solid-State and Integrated Circuit Technology, 2006 ICSICT'06 8th International Conference on 2006 pp1453-1455

    [25]

    Zavyalova L V, Lan Luan, Hua Song, Thomas Schmoeller, Shiely J P 2014 Optical Microlithography XXVII San Jose, California, USA, February 23, 2014 p905222

    [26]

    Chen D L, Cao Y P, Huang Z F, Lu X, Zhai A P 2012 Chin. Phys. B 21 084201

    [27]

    Wang H, Li C H, Pan F, Wang H B, Yan D H 2009 Chin. Phys. Lett. 26 118501

    [28]

    Katakamsetty U, Colin H, Yeo S, Valerio P, Yang Qing, Quek Shyue Fong, Aravind, N S Matthias, R Roberto S 2014 Design-Process-Technology Co-optimization for Manufacturability VIII 2014 San Jose, CA, USA, 23 Feb. 2014 p905312

    [29]

    Yan W X, Wang L Y, Zhang Z F, Liu W L, Song Z T 2014 Chin. Phys. B 23 048301

    [30]

    He A D, L B, Song Z T, Wang L Y, Liu W L, Feng G M, Feng S L 2014 Chin. Phys. B 23 088802

    [31]

    Yang Y W, Shi Z, Sun L T, Chen Y, Hu Z J 2010 i Design for Manufacturability through Design-Process Integration IV San Jose, CA, USA, 3 April 2010 p76410O

  • [1]

    www.itrs.net

    [2]

    Tian X B, Xu H, Li Q J 2013 Chin. Phys. B 22 088502

    [3]

    Fang X D, Tang Y H, Wu J J, Zhu X, Zhou J, Huang D 2013 Chin. Phys. B 22 078901

    [4]

    Cai D L, Song Z T, Li X, Chen H P, Chen X G 2011 Chin. Phys. Lett. 28 018501

    [5]

    Zhu Z M, Li R, Hao B T, Yang Y T 2009 Chin. Phys. B 18 4995

    [6]

    Cobb N B, Avideh Zakhor 1995 15th Annual BACUS Symposium on Photomask Technology and Management Santa Clara, CA, September 20, 1995 p534

    [7]

    Cobb N, Dudau D 2006 Proc. SPIE 6154, Optical Microlithography XIX San Jose, CA, February 19, 2006 p61540I

    [8]

    Jaione T A, Alan E R, Timothy B 2014 J. Micro/Nanolith. MEMS MOEMS. 13 023014

    [9]

    Lori A J, Michael T R, Jason D, Christiane J 2002 Proc. SPIE 4691, Optical Microlithography XV Santa Clara, CA, March 03, 2002 p861

    [10]

    Bouton G, Connolly B, Courboin D, Di Giacomo A, Gasnier F, Lallement R, Parker D, Pindo M, Richoilley J C, Royere F, Rameau-Savio A, Tissier M 2011 27th European Mask and Lithography Conference Dresden, Germany, January 18, 2011 p79850R

    [11]

    Carau D, Bouyssou R, Dezauzier C, Besacier M, Gourgon C 2014 Optical Micro-and Nanometrology V Brussels, Belgium, April 14, 2014 p91320D

    [12]

    Michael Hyatt, Karen Huang, Anton DeVilliers, Mark Slezak, Zhi Liu 2014 Advances in Patterning Materials and Processes XXXI San Jose, California, USA, February 23, 2014 p905118

    [13]

    Drapeau M, Wiaux V, Hendrickx E, Verhaegen S, Machida T 2007 Conference on Design for Manufacturability through Design-Process Integration San Jose, CA 2007 p652109

    [14]

    Ghaida R S, Torres G, Gupta, P 2011 Semiconductor Manufacturing, IEEE Transactions on 24 93

    [15]

    Poonawala A, Milanfar P 2007 Image Processing, IEEE Transactions on 16 774

    [16]

    Alexandre Villaret, Alexander Tritchkov, Jorge Entradas, Emek Yesilada 2013 Optical Microlithography XXVI San Jose, California, USA, February 24, 2013 p86830E

    [17]

    Lv W, Xia Q, Liu S Y 2013 J. MicroNanolith. Mems Moems 12 043003

    [18]

    Wang J P, Qi S Y, Liu S G 2014 Acta Phys. Sin. 63 128503 (in Chinese) [王俊平, 戚苏阳, 刘士钢 2014 物理学报 63 128503]

    [19]

    Kong JT 2004 IEEE Transactions on VLSI Systems 12 1132

    [20]

    Zhang Z M, Xiao P, Sun X, Ding Z J 2006 Acta Phys. Sin. 55 5803 (in Chinese) [张增明, 肖沛, 孙霞, 丁泽军 2006 物理学报 55 5803]

    [21]

    Mazen Saied, Franck Foussadier, Jérô me Belledent, Yorick Trouiller, Isabelle Schanen, Emek Yesilada, Christian Gardin, Jean Christophe Urbani, Frank Sundermann, Frédéric Robert, Christophe Couderc, Florent Vautrin, Laurent LeCam, Gurwan Kerrien, Jonathan Planchot, Catherine Martinelli, Bill Wilkinson, Yves Rody, Amandine Borjon, Nicolo Morgana, Jean-Luc Di-Maria, Vincent Farys 2007 Photomask Technology 2007 Monterey, CA, September 17, 2007 p673050

    [22]

    Viviana Agudelo, Tim Fhner, Andreas Erdmann, Peter Evanschitzky 2013 J. MicroNanolith. MEMS MOEMS. 13 011002

    [23]

    Chen D L, Cao Y P, Huang Z F 2011 Chin. Phys. Lett. 28 068503

    [24]

    Ye Chen, Zheng Shi, Ke Zhou, Yue Ma, Shanhu Shen, Xiaolang Yan 2006 Solid-State and Integrated Circuit Technology, 2006 ICSICT'06 8th International Conference on 2006 pp1453-1455

    [25]

    Zavyalova L V, Lan Luan, Hua Song, Thomas Schmoeller, Shiely J P 2014 Optical Microlithography XXVII San Jose, California, USA, February 23, 2014 p905222

    [26]

    Chen D L, Cao Y P, Huang Z F, Lu X, Zhai A P 2012 Chin. Phys. B 21 084201

    [27]

    Wang H, Li C H, Pan F, Wang H B, Yan D H 2009 Chin. Phys. Lett. 26 118501

    [28]

    Katakamsetty U, Colin H, Yeo S, Valerio P, Yang Qing, Quek Shyue Fong, Aravind, N S Matthias, R Roberto S 2014 Design-Process-Technology Co-optimization for Manufacturability VIII 2014 San Jose, CA, USA, 23 Feb. 2014 p905312

    [29]

    Yan W X, Wang L Y, Zhang Z F, Liu W L, Song Z T 2014 Chin. Phys. B 23 048301

    [30]

    He A D, L B, Song Z T, Wang L Y, Liu W L, Feng G M, Feng S L 2014 Chin. Phys. B 23 088802

    [31]

    Yang Y W, Shi Z, Sun L T, Chen Y, Hu Z J 2010 i Design for Manufacturability through Design-Process Integration IV San Jose, CA, USA, 3 April 2010 p76410O

  • [1] 白胜波, 陈志华, 张焕好, 陈高捷, 曹世程, 张升博. 硅原子层刻蚀流程的速率优化. 物理学报, 2023, 72(21): 215214. doi: 10.7498/aps.72.20231022
    [2] 楼森岳. 可积系统多孤子解的全反演对称表达式. 物理学报, 2020, 69(1): 010503. doi: 10.7498/aps.69.20191172
    [3] 王晨阳, 段倩倩, 周凯, 姚静, 苏敏, 傅意超, 纪俊羊, 洪鑫, 刘雪芹, 汪志勇. 基于遗传算法优化卷积长短记忆混合神经网络模型的光伏发电功率预测. 物理学报, 2020, 69(10): 100701. doi: 10.7498/aps.69.20191935
    [4] 汪韧, 郭静波, 惠俊鹏, 王泽, 刘红军, 许元男, 刘韵佛. 基于卷积高斯混合模型的统计压缩感知. 物理学报, 2019, 68(18): 180701. doi: 10.7498/aps.68.20190414
    [5] 尹文也, 何伟基, 顾国华, 陈钱. 模拟回火马尔可夫链蒙特卡罗全波形分析方法. 物理学报, 2014, 63(16): 164205. doi: 10.7498/aps.63.164205
    [6] 韩冬, 陈良富, 李莘莘, 陶金花, 苏林, 邹铭敏, 范萌. 基于振动拉曼散射的差分水Ring效应系数卷积计算模型. 物理学报, 2013, 62(10): 109301. doi: 10.7498/aps.62.109301
    [7] 游阳明, 王炳章, 王吉有. P原子的光学模型势与核极化修正. 物理学报, 2012, 61(20): 202401. doi: 10.7498/aps.61.202401
    [8] 郑浩勇, 王猛, 王修星, 黄卫东. 基于Wenzel模型的粗糙界面异质形核分析. 物理学报, 2011, 60(6): 066402. doi: 10.7498/aps.60.066402
    [9] 厉思杰, 白博峰. 可膨胀过热水系统多气核演化过程与临界过热度分析. 物理学报, 2009, 58(11): 7596-7602. doi: 10.7498/aps.58.7596
    [10] 邢莉娟, 李 卓, 白宝明, 王新梅. 量子卷积码的编译码方法. 物理学报, 2008, 57(8): 4695-4699. doi: 10.7498/aps.57.4695
    [11] 何文平, 封国林, 董文杰, 李建平. Lorenz系统的可预报性. 物理学报, 2006, 55(2): 969-977. doi: 10.7498/aps.55.969
    [12] 高永华, 赵志恒, 侯召宇, 曹鹤飞, 段春贵, 何祯民. 改进的核密度模型与强子-核Drell-Yan过程中的核效应. 物理学报, 2006, 55(11): 5760-5763. doi: 10.7498/aps.55.5760
    [13] 罗 林, 王 黎, 程卫东, 沈忙作. 天文图像多帧盲反卷积收敛性的增强方法. 物理学报, 2006, 55(12): 6708-6714. doi: 10.7498/aps.55.6708
    [14] 田晓东, 岳瑞宏. 推广的多分量费米型量子可导非线性Schr?dinger模型的可积性. 物理学报, 2005, 54(4): 1485-1489. doi: 10.7498/aps.54.1485
    [15] 曲凯阳, 江 亿. 均质形核结冰随机性及形核率的研究. 物理学报, 2000, 49(11): 2214-2219. doi: 10.7498/aps.49.2214
    [16] 张济忠. 氧化钼分形生长的核晶凝聚模型. 物理学报, 1992, 41(8): 1302-1307. doi: 10.7498/aps.41.1302
    [17] 赵宝华, 郑兆勃. 态密度的卷积律及维度性. 物理学报, 1987, 36(11): 1459-1471. doi: 10.7498/aps.36.1459
    [18] 张宗烨, 厉光烈. 超核激发态的对称性分类. 物理学报, 1977, 26(6): 467-476. doi: 10.7498/aps.26.467
    [19] 张宗烨, 厉光烈. 超核激发态的对称性分类. 物理学报, 1976, 25(2): 172-174. doi: 10.7498/aps.25.172
    [20] 严国光. 大变形区的两种核模型. 物理学报, 1962, 18(11): 605-608. doi: 10.7498/aps.18.605
计量
  • 文章访问数:  4018
  • PDF下载量:  506
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-19
  • 修回日期:  2014-10-09
  • 刊出日期:  2015-03-05

/

返回文章
返回