搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯基双曲色散特异材料的负折射与体等离子体性质

龚健 张利伟 陈亮 乔文涛 汪舰

引用本文:
Citation:

石墨烯基双曲色散特异材料的负折射与体等离子体性质

龚健, 张利伟, 陈亮, 乔文涛, 汪舰

Negative refraction and bulk polariton properties of the graphene-based hyperbolic metamaterials

Gong Jian, Zhang Li-Wei, Chen Liang, Qiao Wen-Tao, Wang Jian
PDF
导出引用
  • 基于有效介质理论研究了石墨烯/介质周期结构的电磁性质, 研究发现这种复合结构的等频面在太赫兹和远红外波段为双曲线, 可用来实现石墨烯基双曲色散特异材料. 通过改变石墨烯的费米能级、介质层厚度和单元结构中石墨烯的层数, 可很容易地调节双曲色散存在的频段. 由于等频面的双曲色散特性, 石墨烯基双曲色散特异材料在远低于截止频率的范围内, 对斜入射的电磁波具有负的能量折射率和正的相位折射率, 并支持局域体等离子体模式. 基于衰减全反射结构, 研究了体等离子体的激发, 探索了体等离子体在可调的光学反射调制器中的应用.
    We theoretically investigate the electromagnetic properties of the multilayer graphene-dielectric composite materials based on the effective medium theory. It is found that the structure exhibits hyperbolic isofrequency wavevector dispersions at THz and far-infrared frequencies, hence thereby realizing the effective graphene-based hyperbolic metamaterials (HMM). The frequncy band of the hyperbolic dispersion can be tuned by changing the Fermi energy of graphene sheet, the thickness of the dielectric layer and the layer number of graphene sheets. Because of the hyperbolic dispersion, graphene-based HMM possesses a negative energy refraction and positive phase refraction for oblique incidence at far below the critical frequency. The highly confined bulk polariton modes are also supported. Based on the attenuated total reflection configuration, the excitation of the bulk polariton mode is studied, in addition, such properties used in the tunable optical reflection modulation are also explored.
    • 基金项目: 国家自然科学基金(批准号: 10904032, 11204068, 11405045)、河南省教育厅自然科学基金(批准号: 14A140011, 2012GGJS-060)、河南理工大学杰出青年基金(批准号: J2013-09)、河南理工大学创新型科研团队支持计划(批准号:T2015-3)和河南理工大学博士基金(批准号: B2009-92, B2009-61)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10904032, 11204068, 11405045), the Foundations of Henan Educational Committee, China (Grant Nos. 14A140011, 2012GGJS-060), the Henan Polytechnic University Program for Distinguished Young Scholars, China (Grant No. J2013-09), the Henan Polytechnic University Program for Innovative Research Team, China (Grant No. T2015-3), and the Doctoral Foundation of Henan Polytechnic University, China (Grant Nos. B2009-92, B2009-61).
    [1]

    Smith D R, Schultz S 2003 Phys. Rev. Lett. 90 077405

    [2]

    Drachev V P, Podolskiy V A, Kildishev A V 2013 Opt. Express 21 15048

    [3]

    Argyropoulos C, Estakhri N M, Monticone F, Alú A 2013 Opt. Express 21 15037

    [4]

    Sreekanth K V, Luca A De, Strangi G 2013 Appl. Phys. Lett. 103 023107

    [5]

    Wood B, Pendry J B, Tsai D P 2006 Phys. Rev. B 74 115116

    [6]

    Kotynski R, Stefaniuk T 2010 Opt. Lett. 35 1133

    [7]

    Xiang Y J, Dai X Y, We S C, Fan D Y 2007 J. Appl. Phys. 102 093107

    [8]

    Zhukovsky S V, Kidwai O, Sipe J E 2013 Opt. Express 21 14982

    [9]

    Noginov M A, Barnakov A, Zhu G, Tumkur T, Li H Narimanov E E 2009 Appl. Phys. Lett. 94 151105

    [10]

    Vinogradov A P, Dorofeenko A V, Nechepurenko I A 2010 Metamaterials 4 181

    [11]

    Dong H M 2013 Acta Phys. Sin. 62 237804 (in Chinese) [董海明 2013 物理学报 62 237804]

    [12]

    Novoselov K S, Falko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192

    [13]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nature Photon. 6 749

    [14]

    Guo B D, Fang L, Zhang B H, Gong J R 2011 Insciences J. 1 80

    [15]

    Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Neto A H C, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82

    [16]

    Xie L Y, Xiao W B, Huang G Q, Hu A R, Liu J T 2014 Acta Phys. Sin. 63 057803 (in Chinese) [谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛 2014 物理学报 63 057803]

    [17]

    Othman M A K, Guclu C, Capolino F 2013 J. Nanophoton. 7 073089

    [18]

    Wu H Q, Linghu C Y, L H M, Qian H 2013 Chin. Phys. B 22 098106

    [19]

    Zhang L, Fu X L, Lei M, Chen J J, Yang J Z, Peng Z J, Tang W H 2014 Chin. Phys. B 23 038101

    [20]

    Iorsh I V, Mukhin I S, Shadrivov I V, Belov P A, Kivshar Y S 2013 Phys. Rev. B 87 075416

    [21]

    Zhang T, Chen L, Li X 2013 Opt. Express 21 20888

    [22]

    Zhu B F, Ren G B, Zheng S W, Lin Z, Jian S S 2013 Opt. Express 21 17089

    [23]

    Xiang Y J, Guo J, Dai X Y, Wen S C, Tang D Y 2014 Opt. Express 22 3054

    [24]

    Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103(R)

    [25]

    Kidwai O, Zhukovsky S V, Sipe J E 2012 Phys. Rev. A 85 053842

    [26]

    Hu L B, Chui S T 2002 Phys. Rev. B 66 085108

    [27]

    Grzegorczyk T M, Nikku M, Chen X D, Wu B I, Kong J A 2005 IEEE Trans. Microw. Theory Tech. 53 1443

    [28]

    Avrutsky I, Salakhutdinov I, Elser J, Podolskiy V 2007 Phys. Rev. B 75 241402

    [29]

    Xu H J, Lu W B, Zhu W, Dong Z G, Cui T J 2012 Appl. Phys. Lett. 100 243110

    [30]

    Chen C F, Park C H, Boudouris B W, Horng J, Geng B, Girit C, Zettl A, Crommie M F, Segalman R A, Louie S G, Wang F 2011 Nature 471 617

    [31]

    Shi X L, Zheng S L, Chi H, Jin X F, Zhang X M 2013 Opt. Laser Technol. 49 316

    [32]

    Li J S 2013 Opt. Commun. 296 137

  • [1]

    Smith D R, Schultz S 2003 Phys. Rev. Lett. 90 077405

    [2]

    Drachev V P, Podolskiy V A, Kildishev A V 2013 Opt. Express 21 15048

    [3]

    Argyropoulos C, Estakhri N M, Monticone F, Alú A 2013 Opt. Express 21 15037

    [4]

    Sreekanth K V, Luca A De, Strangi G 2013 Appl. Phys. Lett. 103 023107

    [5]

    Wood B, Pendry J B, Tsai D P 2006 Phys. Rev. B 74 115116

    [6]

    Kotynski R, Stefaniuk T 2010 Opt. Lett. 35 1133

    [7]

    Xiang Y J, Dai X Y, We S C, Fan D Y 2007 J. Appl. Phys. 102 093107

    [8]

    Zhukovsky S V, Kidwai O, Sipe J E 2013 Opt. Express 21 14982

    [9]

    Noginov M A, Barnakov A, Zhu G, Tumkur T, Li H Narimanov E E 2009 Appl. Phys. Lett. 94 151105

    [10]

    Vinogradov A P, Dorofeenko A V, Nechepurenko I A 2010 Metamaterials 4 181

    [11]

    Dong H M 2013 Acta Phys. Sin. 62 237804 (in Chinese) [董海明 2013 物理学报 62 237804]

    [12]

    Novoselov K S, Falko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192

    [13]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nature Photon. 6 749

    [14]

    Guo B D, Fang L, Zhang B H, Gong J R 2011 Insciences J. 1 80

    [15]

    Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Neto A H C, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82

    [16]

    Xie L Y, Xiao W B, Huang G Q, Hu A R, Liu J T 2014 Acta Phys. Sin. 63 057803 (in Chinese) [谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛 2014 物理学报 63 057803]

    [17]

    Othman M A K, Guclu C, Capolino F 2013 J. Nanophoton. 7 073089

    [18]

    Wu H Q, Linghu C Y, L H M, Qian H 2013 Chin. Phys. B 22 098106

    [19]

    Zhang L, Fu X L, Lei M, Chen J J, Yang J Z, Peng Z J, Tang W H 2014 Chin. Phys. B 23 038101

    [20]

    Iorsh I V, Mukhin I S, Shadrivov I V, Belov P A, Kivshar Y S 2013 Phys. Rev. B 87 075416

    [21]

    Zhang T, Chen L, Li X 2013 Opt. Express 21 20888

    [22]

    Zhu B F, Ren G B, Zheng S W, Lin Z, Jian S S 2013 Opt. Express 21 17089

    [23]

    Xiang Y J, Guo J, Dai X Y, Wen S C, Tang D Y 2014 Opt. Express 22 3054

    [24]

    Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103(R)

    [25]

    Kidwai O, Zhukovsky S V, Sipe J E 2012 Phys. Rev. A 85 053842

    [26]

    Hu L B, Chui S T 2002 Phys. Rev. B 66 085108

    [27]

    Grzegorczyk T M, Nikku M, Chen X D, Wu B I, Kong J A 2005 IEEE Trans. Microw. Theory Tech. 53 1443

    [28]

    Avrutsky I, Salakhutdinov I, Elser J, Podolskiy V 2007 Phys. Rev. B 75 241402

    [29]

    Xu H J, Lu W B, Zhu W, Dong Z G, Cui T J 2012 Appl. Phys. Lett. 100 243110

    [30]

    Chen C F, Park C H, Boudouris B W, Horng J, Geng B, Girit C, Zettl A, Crommie M F, Segalman R A, Louie S G, Wang F 2011 Nature 471 617

    [31]

    Shi X L, Zheng S L, Chi H, Jin X F, Zhang X M 2013 Opt. Laser Technol. 49 316

    [32]

    Li J S 2013 Opt. Commun. 296 137

  • [1] 刘瑛, 郭斯琳, 张勇, 杨鹏, 吕克洪, 邱静, 刘冠军. 1/f噪声及其在二维材料石墨烯中的研究进展. 物理学报, 2023, 72(1): 017302. doi: 10.7498/aps.72.20221253
    [2] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应. 物理学报, 2022, 71(2): 024201. doi: 10.7498/aps.71.20211397
    [3] 魏宁, 赵思涵, 李志辉, 区炳显, 花安平, 赵军华. 石墨烯尺寸和分布对石墨烯/铝基复合材料裂纹扩展的影响. 物理学报, 2022, 71(13): 134702. doi: 10.7498/aps.71.20212203
    [4] 周海涛, 熊希雅, 罗飞, 罗炳威, 刘大博, 申承民. 原位生长技术制备石墨烯强化铜基复合材料. 物理学报, 2021, 70(8): 086201. doi: 10.7498/aps.70.20201943
    [5] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211397
    [6] 赵雯琪, 张岱, 崔明慧, 杜颖, 张树宇, 区琼荣. 等离子体对石墨烯的功能化改性. 物理学报, 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [7] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计. 物理学报, 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [8] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控. 物理学报, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [9] 徐小虎, 陈永强, 郭志伟, 孙勇, 苗向阳. 等效零折射率材料微腔中均匀化腔场作用下的简正模劈裂现象. 物理学报, 2018, 67(2): 024210. doi: 10.7498/aps.67.20171880
    [10] 吴春艳, 杜晓薇, 周麟, 蔡奇, 金妍, 唐琳, 张菡阁, 胡国辉, 金庆辉. 顶栅石墨烯离子敏场效应管的表征及其初步应用. 物理学报, 2016, 65(8): 080701. doi: 10.7498/aps.65.080701
    [11] 张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨. 基于石墨烯互补超表面的可调谐太赫兹吸波体. 物理学报, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [12] 李志全, 张明, 彭涛, 岳中, 顾而丹, 李文超. 基于导模共振效应提高石墨烯表面等离子体的局域特性. 物理学报, 2016, 65(10): 105201. doi: 10.7498/aps.65.105201
    [13] 李丹, 刘勇, 王怀兴, 肖龙胜, 凌福日, 姚建铨. 太赫兹波段石墨烯等离子体的增益特性. 物理学报, 2016, 65(1): 015201. doi: 10.7498/aps.65.015201
    [14] 乔文涛, 龚健, 张利伟, 王勤, 王国东, 廉书鹏, 陈鹏辉, 孟威威. 梳状波导结构中石墨烯表面等离子体的传播性质. 物理学报, 2015, 64(23): 237301. doi: 10.7498/aps.64.237301
    [15] 张玉萍, 刘陵玉, 陈琦, 冯志红, 王俊龙, 张晓, 张洪艳, 张会云. 具有分离门电抽运石墨烯中电子-空穴等离子体的冷却效应. 物理学报, 2013, 62(9): 097202. doi: 10.7498/aps.62.097202
    [16] 武继江, 高金霞. 含特异材料一维超导光子晶体的带隙特性研究. 物理学报, 2013, 62(12): 124102. doi: 10.7498/aps.62.124102
    [17] 童元伟, 毛宇, 庄松林. 光频段多频率域负折射率材料的数值研究. 物理学报, 2010, 59(8): 5553-5558. doi: 10.7498/aps.59.5553
    [18] 刘亚红, 罗春荣, 赵晓鹏. 同时实现介电常数和磁导率为负的H型结构单元左手材料. 物理学报, 2007, 56(10): 5883-5889. doi: 10.7498/aps.56.5883
    [19] 王素玲, 张冶文, 赫 丽, 李宏强, 陈 鸿. 可调谐一维特异材料(Metamaterial)的微波传输性质. 物理学报, 2006, 55(1): 226-229. doi: 10.7498/aps.55.226
    [20] 郑 晴, 赵晓鹏, 李明明, 赵 晶. 缺陷对左手材料负折射的调控行为. 物理学报, 2006, 55(12): 6441-6446. doi: 10.7498/aps.55.6441
计量
  • 文章访问数:  5919
  • PDF下载量:  771
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-25
  • 修回日期:  2014-10-16
  • 刊出日期:  2015-03-05

/

返回文章
返回