搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁基超导体FeSe0.5Te0.5表面隧道谱的研究

杜增义 方德龙 王震宇 杜冠 杨雄 杨欢 顾根大 闻海虎

引用本文:
Citation:

铁基超导体FeSe0.5Te0.5表面隧道谱的研究

杜增义, 方德龙, 王震宇, 杜冠, 杨雄, 杨欢, 顾根大, 闻海虎

Investigation of scanning tunneling spectra on iron-based superconductor FeSe0.5Te0.5

Du Zeng-Yi, Fang De-Long, Wang Zhen-Yu, Du Guan, Yang Xiong, Yang Huan, Gu Gen-Da, Wen Hai-Hu
PDF
导出引用
  • 用扫描隧道显微镜/谱仪仔细研究了铁基超导单晶FeSe0.5Te0.5样品的表面形貌和隧道谱, 测量到了清晰的表面原子形貌和在空间比较稳定的隧道谱结构.在样品中测量的隧道谱零能态密度比较高, 说明样品里面有比较强的非弹性准粒子散射. 在正能5 mV附近有个较大的背景鼓包, 这一背景在很高温度也未消失. 空间中Se和Te集中的位置会带来高能背景的变化, 超导能隙附近谱的形状大致相同. 较强的非弹性准粒子散射破坏了超导的准粒子散射, 因此没有在二维微分电导图中发现超导准粒子相干散射的特征亮斑.
    FeSe0.5Te0.5 single crystals with superconducting critical temperature of 13.5 K are investigated by scanning tunneling microscopy/spectroscopy (STM/STS) measureflents in detail. STM image on the top surface shows an atomically resolved square lattice consisted by white and dark spots with a constant of about 3.73 0.03 which is consistent with the lattice constant 3.78 . The Se and Te atoms with a height difference of about 0.35 are successfully identified since the sizes of the two kinds of atoms are different. The tunneling spectra show very large zero-bias conductance value and asymmetric coherent peaks in the superconducting state. According to the positions of coherence peaks, we determine the superconducting gap 2 = 5.5 meV, and the reduced gap 2/kBTc = 4.9 is larger than the value predicted by the weak-coupling BCS theory. The zero-bias conductance at 1.7 K only have a decrease of about 40% compared with the normal state conductance, which may originate from some scattering and broadening mechanism in the material. This broadening effect will also make the superconducting gap determined by the distance between the coherence peaks larger than the exact gap value. The asymmetric structure of the tunneling spectra near the superconducting gap is induced by the hump on the background. This hump appears at temperature more than twice the superconducting critical temperature. This kind of hump has also been observed in other iron pnictides and needs further investigation. A possible bosonic mode outside the coherence peak with a mode energy of about 5.5 meV is observed in some tunneling spectra, and the ratio between the mode energy and superconducting transition temperature /kBTc 4.7 is roughly consistent with the universal ratio 4.3 in iron-based superconductors. The high-energy background of the spectra beyond the superconducting gaps shows a V-shape feature. The slopes of the differential conductance spectra at high energy are very different in the areas of Te-atom cluster and Se-atom cluster, and the difference extends to the energy of more than 300 meV. The differential conductance mapping has very little information about the quasi-particle interference of the superconducting state, which may result from the other strong scattering mechanism in the sample.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CBA00102)、国家自然科学基金(批准号: 11374144)和美国能源部材料科学与工程学部基础能源科学办公室(项目合同号: DE-AC02-98CH10886)资助的课题.
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2011CBA00102), the National Natural Science Foundation of China (Grant No. 11374144). Work at Brookhaven National Laboratory was supported by the Office of Basic Energy Sciences, Division of Materials Science and Engineering, U. S. Department of Energy, under Contract DE-AC02-98CH10886.
    [1]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Ame. Chem. Soc. 130 3296

    [2]

    Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215

    [3]

    Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F 2008 Nature 453 761

    [4]

    Jiang H, Sun Y L, Xu Z A, Cao G H 2013 Chin. Phys. B 22 087410

    [5]

    Luo H Q 2014 Physics 43 430 (in Chinese) [罗会仟 2014 物理 43 430]

    [6]

    Scalapino D J 2012 Rev. Mod. Phys. 84 1383

    [7]

    Wen H H, Li S L 2011 Annu. Rev. Condens.Matter Phys. 2 121

    [8]

    Stewart G R 2011 Rev. Mod. Phys. 83 1589

    [9]

    Zhao Z X, Yu L 2013 Basic reflearch on the physical properties of iron-based superconductor (Shanghai: Shanghai Scientific and Technical Publishers) p163 (in Chinese) [赵忠贤, 于渌 2013 铁基超导体物性基础研究(上海: 上海科学技术出版社) 第163页]

    [10]

    Shen B, Yang H, Wang Z S, Han F, Zeng B, Shan L, Ren C, Wen H H 2011 Phy. Rev. B 84 184512

    [11]

    Cai P Zhou X D, Ruan W, Wang A F, Chen X H, Lee D H, Wang Y Y 2013 Nature Commun 4 1596

    [12]

    Zhou X D, Cai P, Wang Y Y 2013 Chin. Phys. B 22 087413

    [13]

    Yi M Zhang Y, Liu Z K, Ding X X, Chu J H Kemper A F, N. Plonka N Moritz B, Hashimoto M, Mo S K, Hussain Z, Devereaux T P Fisher I R, Wen H H, Shen Z X Lu D H 2013 Nature Common. 5 3711

    [14]

    Fernandes R M, Chubukov A V Schmalian J 2014 Nature Phys. 10 97

    [15]

    Yu S L and Li J X 2013 Chin. Phys. B 22 087411

    [16]

    Mazin I I, Singh D J, Johannes M D, Du M H 2008 Phys. Rev. Lett. 101 057003

    [17]

    Kuroki K, Onari S, Arita R, Usui H, Tanaka Y, Kontani H, Aoki H 2008 Phys. Rev. Lett. 101 087004

    [18]

    Yang H, Wang Z Y, Fang D L, Deng Q, Wang Q H, Xiang Y Y, Yang Y, Wen H H 2013 Nature Common. 4 2749

    [19]

    Zhu X Y, Han F, Mu G, Cheng P, Shen B, Zeng B, Wen H H 2009 Phys. Rev. B 79 220512

    [20]

    Bao W, Qiu Y, Huang Q, Green M A, Zajdel P, Fitzsimmons M R, Zhernenkov M, Chang S, Fang M H, Qian B, Vehstedt E K, Yang J H, Pham H M, Spinu L, Mao Z Q 2009 Phys. Rev. Lett. 102 247001

    [21]

    Wang Q Yan, Li Z, Zhang W H, Zang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [22]

    Zhang W H, Sun Y, Zhang J S, Li F S, Guo M H, Zhao Y F, Zhang H M, Peng J P, Xing Y, Wang H C, Fujita T, Hirata A, Li Z, Ding H, Tang C J, Wang M, Wang Q Y, He K, Ji S H, Chen X, Wang J F, Xia Z C, Li L, Wang Y Y, Wang J, Wang L L, Chen M W, Xue Q K, Ma X C 2014 Chin. Phys. Lett. 31 017401

    [23]

    Kasahara S, Watashige T, Hanaguri T, Kohsaka Y, Yamashita T, Shimoyama Y, Mizukami Y, Endo R, Ikeda H, Aoyama K, Terashima T, Uji S, Wolf T, Hilbert von Löhneysen H V, Shibauchi T, Matsuda Y 2014 PNAS 111 16309

    [24]

    Liu T J, Hu J, Qian B, Fobes D, Mao Z Q, Bao W, Reehuis M, Kimber S A J Prokeš K Matas S, Argyriou D N, Hiess A, Rotaru A, Pham H, Spinu L, Y. Qiu Y Thampy V, Savici A T, Rodriguez J A Broholm C 2010 Nature Mater 9 716

    [25]

    Hanaguri T, Niitaka S Kuroki K Takagi H 2010 Science 328 474

    [26]

    Lin W Z Li Q, Sales B C Jesse S Sefat A S Kalinin S V, Pan M H 2013 ACS Nano 7 2634

    [27]

    Wen J S, Xu G Y, Xu Z J, Lin Z W, Li Q, Chen Y, Chi S X, Gu G D, Tranquada J M2010 Phys. Rev. B 81 100513(R)

    [28]

    Wang Z Y 2014 Ph. D. Dissertation (Beijing: Institute of Physics, CAS) (in Chinese) [王震宇 2014 博士学位论文(北京: 中科院物理研究所)]

    [29]

    Sun Y, Tsuchiya Y, Taen T, Yamada T, Pyon S, Sugimoto A, Ekino T, Shi Z X, Tamegai T 2014 Sci. Rep. 4 4585

    [30]

    Yang H, Wang Z Y, Fang D L, Li S, Kariyado T, Chen G F, Ogata M, Das T, Balatsky A V, Wen H H 2012 Phys. Rev. B 86 214512

    [31]

    Zhou X D, Cai P, Wang A F, Ruan W, Ye C, Chen X H, You Y Z, Weng Z Y, Wang Y Y 2012 Phys. Rev. Lett. 109 037002

    [32]

    Wang Z Y, Fang D L, Deng Q, Yang H, Ren C, Wen H H 2014 Phys. Rev. B 89 214515

    [33]

    Wang Z Y, Yang H, Fang D L, Shen B, Wang Q H, Shan L, Zhang C L, Dai P C, Wen H H 2013 Nature Phys. 9 42

  • [1]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Ame. Chem. Soc. 130 3296

    [2]

    Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215

    [3]

    Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F 2008 Nature 453 761

    [4]

    Jiang H, Sun Y L, Xu Z A, Cao G H 2013 Chin. Phys. B 22 087410

    [5]

    Luo H Q 2014 Physics 43 430 (in Chinese) [罗会仟 2014 物理 43 430]

    [6]

    Scalapino D J 2012 Rev. Mod. Phys. 84 1383

    [7]

    Wen H H, Li S L 2011 Annu. Rev. Condens.Matter Phys. 2 121

    [8]

    Stewart G R 2011 Rev. Mod. Phys. 83 1589

    [9]

    Zhao Z X, Yu L 2013 Basic reflearch on the physical properties of iron-based superconductor (Shanghai: Shanghai Scientific and Technical Publishers) p163 (in Chinese) [赵忠贤, 于渌 2013 铁基超导体物性基础研究(上海: 上海科学技术出版社) 第163页]

    [10]

    Shen B, Yang H, Wang Z S, Han F, Zeng B, Shan L, Ren C, Wen H H 2011 Phy. Rev. B 84 184512

    [11]

    Cai P Zhou X D, Ruan W, Wang A F, Chen X H, Lee D H, Wang Y Y 2013 Nature Commun 4 1596

    [12]

    Zhou X D, Cai P, Wang Y Y 2013 Chin. Phys. B 22 087413

    [13]

    Yi M Zhang Y, Liu Z K, Ding X X, Chu J H Kemper A F, N. Plonka N Moritz B, Hashimoto M, Mo S K, Hussain Z, Devereaux T P Fisher I R, Wen H H, Shen Z X Lu D H 2013 Nature Common. 5 3711

    [14]

    Fernandes R M, Chubukov A V Schmalian J 2014 Nature Phys. 10 97

    [15]

    Yu S L and Li J X 2013 Chin. Phys. B 22 087411

    [16]

    Mazin I I, Singh D J, Johannes M D, Du M H 2008 Phys. Rev. Lett. 101 057003

    [17]

    Kuroki K, Onari S, Arita R, Usui H, Tanaka Y, Kontani H, Aoki H 2008 Phys. Rev. Lett. 101 087004

    [18]

    Yang H, Wang Z Y, Fang D L, Deng Q, Wang Q H, Xiang Y Y, Yang Y, Wen H H 2013 Nature Common. 4 2749

    [19]

    Zhu X Y, Han F, Mu G, Cheng P, Shen B, Zeng B, Wen H H 2009 Phys. Rev. B 79 220512

    [20]

    Bao W, Qiu Y, Huang Q, Green M A, Zajdel P, Fitzsimmons M R, Zhernenkov M, Chang S, Fang M H, Qian B, Vehstedt E K, Yang J H, Pham H M, Spinu L, Mao Z Q 2009 Phys. Rev. Lett. 102 247001

    [21]

    Wang Q Yan, Li Z, Zhang W H, Zang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [22]

    Zhang W H, Sun Y, Zhang J S, Li F S, Guo M H, Zhao Y F, Zhang H M, Peng J P, Xing Y, Wang H C, Fujita T, Hirata A, Li Z, Ding H, Tang C J, Wang M, Wang Q Y, He K, Ji S H, Chen X, Wang J F, Xia Z C, Li L, Wang Y Y, Wang J, Wang L L, Chen M W, Xue Q K, Ma X C 2014 Chin. Phys. Lett. 31 017401

    [23]

    Kasahara S, Watashige T, Hanaguri T, Kohsaka Y, Yamashita T, Shimoyama Y, Mizukami Y, Endo R, Ikeda H, Aoyama K, Terashima T, Uji S, Wolf T, Hilbert von Löhneysen H V, Shibauchi T, Matsuda Y 2014 PNAS 111 16309

    [24]

    Liu T J, Hu J, Qian B, Fobes D, Mao Z Q, Bao W, Reehuis M, Kimber S A J Prokeš K Matas S, Argyriou D N, Hiess A, Rotaru A, Pham H, Spinu L, Y. Qiu Y Thampy V, Savici A T, Rodriguez J A Broholm C 2010 Nature Mater 9 716

    [25]

    Hanaguri T, Niitaka S Kuroki K Takagi H 2010 Science 328 474

    [26]

    Lin W Z Li Q, Sales B C Jesse S Sefat A S Kalinin S V, Pan M H 2013 ACS Nano 7 2634

    [27]

    Wen J S, Xu G Y, Xu Z J, Lin Z W, Li Q, Chen Y, Chi S X, Gu G D, Tranquada J M2010 Phys. Rev. B 81 100513(R)

    [28]

    Wang Z Y 2014 Ph. D. Dissertation (Beijing: Institute of Physics, CAS) (in Chinese) [王震宇 2014 博士学位论文(北京: 中科院物理研究所)]

    [29]

    Sun Y, Tsuchiya Y, Taen T, Yamada T, Pyon S, Sugimoto A, Ekino T, Shi Z X, Tamegai T 2014 Sci. Rep. 4 4585

    [30]

    Yang H, Wang Z Y, Fang D L, Li S, Kariyado T, Chen G F, Ogata M, Das T, Balatsky A V, Wen H H 2012 Phys. Rev. B 86 214512

    [31]

    Zhou X D, Cai P, Wang A F, Ruan W, Ye C, Chen X H, You Y Z, Weng Z Y, Wang Y Y 2012 Phys. Rev. Lett. 109 037002

    [32]

    Wang Z Y, Fang D L, Deng Q, Yang H, Ren C, Wen H H 2014 Phys. Rev. B 89 214515

    [33]

    Wang Z Y, Yang H, Fang D L, Shen B, Wang Q H, Shan L, Zhang C L, Dai P C, Wen H H 2013 Nature Phys. 9 42

  • [1] 李更, 丁洪, 汪自强, 高鸿钧. 铁基超导体中的马约拉纳零能模及其阵列构筑. 物理学报, 2024, 73(3): 030302. doi: 10.7498/aps.73.20232022
    [2] 闻海虎. 高温超导体磁通钉扎和磁通动力学研究简介. 物理学报, 2021, 70(1): 017405. doi: 10.7498/aps.70.20201881
    [3] 胡江平. 探索非常规高温超导体. 物理学报, 2021, 70(1): 017101. doi: 10.7498/aps.70.20202122
    [4] 李妙聪, 陶前, 许祝安. 铁基超导体的输运性质. 物理学报, 2021, 70(1): 017404. doi: 10.7498/aps.70.20201836
    [5] 孔令元, 丁洪. 铁基超导涡旋演生马约拉纳零能模. 物理学报, 2020, 69(11): 110301. doi: 10.7498/aps.69.20200717
    [6] 金士锋, 郭建刚, 王刚, 陈小龙. 新型FeSe基超导材料研究进展. 物理学报, 2018, 67(20): 207412. doi: 10.7498/aps.67.20181701
    [7] 牟刚, 马永辉. 铁基超导1111体系CaFeAsF的单晶生长和物性研究. 物理学报, 2018, 67(17): 177401. doi: 10.7498/aps.67.20181371
    [8] 李世亮, 刘曌玉, 谷延红. 利用单轴压强下的电阻变化研究铁基超导体中的向列涨落. 物理学报, 2018, 67(12): 127401. doi: 10.7498/aps.67.20180627
    [9] 王志成, 曹光旱. 新型交生结构自掺杂铁基超导体. 物理学报, 2018, 67(20): 207406. doi: 10.7498/aps.67.20181355
    [10] 林桐, 胡蝶, 时立宇, 张思捷, 刘妍琦, 吕佳林, 董涛, 赵俊, 王楠林. 铁基超导体Li0.8Fe0.2ODFeSe的红外光谱研究. 物理学报, 2018, 67(20): 207102. doi: 10.7498/aps.67.20181401
    [11] 王乃舟, 石孟竹, 雷彬, 陈仙辉. FeSe基超导体的探索与物性研究. 物理学报, 2018, 67(20): 207408. doi: 10.7498/aps.67.20181496
    [12] 龚冬良, 罗会仟. 铁基超导体中的反铁磁序和自旋动力学. 物理学报, 2018, 67(20): 207407. doi: 10.7498/aps.67.20181543
    [13] 郭静, 吴奇, 孙力玲. 高压下的铁基超导体:现象与物理. 物理学报, 2018, 67(20): 207409. doi: 10.7498/aps.67.20181651
    [14] 顾强强, 万思源, 杨欢, 闻海虎. 铁基超导体的扫描隧道显微镜研究进展. 物理学报, 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [15] 俞榕. 铁基超导体多轨道模型中的电子关联与轨道选择. 物理学报, 2015, 64(21): 217102. doi: 10.7498/aps.64.217102
    [16] 李世超, 甘远, 王靖珲, 冉柯静, 温锦生. 铁基超导体Fe1+yTe1-xSex中磁性的中子散射研究. 物理学报, 2015, 64(9): 097503. doi: 10.7498/aps.64.097503
    [17] 李政, 周睿, 郑国庆. 铁基超导体的量子临界行为. 物理学报, 2015, 64(21): 217404. doi: 10.7498/aps.64.217404
    [18] 赵敬龙, 董正超, 仲崇贵, 李诚迪. 量子线/铁基超导隧道结中隧道谱的研究. 物理学报, 2015, 64(5): 057401. doi: 10.7498/aps.64.057401
    [19] 李斌, 邢钟文, 刘楣. LiFeAs超导体中磁性与声子软化. 物理学报, 2011, 60(7): 077402. doi: 10.7498/aps.60.077402
    [20] 刘甦, 李斌, 王玮, 汪军, 刘楣. 铁基化合物 SrFeAsF以及 Co掺杂超导体SrFe0.875Co0.125AsF的电子结构和磁性. 物理学报, 2010, 59(6): 4245-4252. doi: 10.7498/aps.59.4245
计量
  • 文章访问数:  6564
  • PDF下载量:  346
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-28
  • 修回日期:  2015-03-19
  • 刊出日期:  2015-05-05

/

返回文章
返回