搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光驱动的冲击波自生磁场以及外加磁场的冲击波放大研究

何民卿 董全力 盛政明 张杰

引用本文:
Citation:

激光驱动的冲击波自生磁场以及外加磁场的冲击波放大研究

何民卿, 董全力, 盛政明, 张杰

Shock wave amplification by shock wave self-generated magnetic field driven by laser and the external magnetic field

He Min-Qing, Dong Quan-Li, Sheng Zheng-Ming, Zhang Jie
PDF
导出引用
  • 冲击波是天体物理观测中常见的现象, 其对粒子的加速被认为是高能宇宙射线的来源. 宇宙中冲击波周围往往存在很强的磁场, 但人们对于此类强磁场的产生放大过程的理解并不充分. 本文利用二维粒子模拟程序研究了激光与磁化或者非磁化等离子体相互作用产生的冲击波现象, 给出了冲击波波前处磁场的产生放大特性. 研究发现, 作用过程中的自生磁场可以储存能量, 从而进一步加速电子; 当存在外加磁场时, 由冲击波加速的电子和离子的能量都比同条件下非磁化等离子体的能量高; 而且外加磁场藉由冲击波放大倍数则与其值有极大关系. 与天文观测中推断的磁场与背景磁场相比放大千倍这一研究结果的比较可以看出, 天体冲击波周围磁场放大主要是由局域内生磁场导致的.
    Shock wave is a common phenomenon in astrophysics. Shock wave acceleration has been regarded as a source of high-energy cosmic rays. Very strong magnetic field exists in the surrounding of the shock wave at the edge of the supernova remnants. But the mechanisms of generation and amplification of such a strong magnetic field are not clear yet. In this paper, the properties of shock wave driven by the laser irradiating on un-magnetized and magnetized plasmas are investigated using two-dimensional particle-in-cell (PIC) simulations. It is found that very strong spontaneous magnetic field can be generated around the laser-driven shock front in the un-magnetized plasma. The spontaneous magnetic field can store energy and accelerate electrons further. When an external magnetic field is introduced, the electrons and ions are accelerated more efficiently by the shock wave than in the un-magnetized plasma. The external magnetic field can transfer its energy to electrons and ions, and strengthen the shock wave. In simulations, the introduced external magnetic field has three different strengths: 1072 MG, 107.2 MG and 10.72 MG, which determine the shock structures through the driven currents. There are two single-polar magnetic arcs that constitute the shock structure when the external magnetic field is 1072 MG, i.e., one is the shock itself and the other is actually the reverse shock, whereas only one magnetic arc is produced but with a bipolar structure in the direction perpendicular to the shock propagation when the externally added magnetic fields are much lower (107.2 MG and 10.72 MG). The two bipolar magnetic structures will evolve into a single-polar arc when the externally added magnetic field is 107.2 MG, but they are kept for all the time when the external magnetic field is 10.72 MG. It can be explained by taking the Larmor radius into the consideration. That the amplification ratio of the magnetic field decreases as the introduced external magnetic field increases implies that the magnetic amplification in the space is possibly due to the local field generation rather than the field compression. An amplification ratio of tens of the external magnetic field is achieved due to the pseudo Rayleigh-Taylor instability, but still much smaller than that around the astrophysical shock front, indicating that other efficient mechanisms are responsible for the observed magnetic amplification around shocks in the supernova remnants.
    • 基金项目: 国家自然科学基金(批准号: 11305013, 11274152)、国家重点基础研究发展计划(批准号: 2013CBA01500)和国家高技术研究发展计划资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11305013, 11274152), the National Basic Research Program of China (Grant No. 2013CBA01500), and the National High Techology and Development Program of China.
    [1]

    Yuan D W, Li Y T 2015 Chin. Phys. B 24 015204

    [2]

    Hegelich B M, Albright B J, Cobble J, Flippo K, Letzring S, Paffett M, Ruhl H, Schreiber J, Schulze R K, Fernández J C 2001 Nature 439 441

    [3]

    Schwoerer H, Pfotenhauer S, Jäckel O, Amthor K U, Liesfeld B, Ziegler W, Sauerbrey R, Ledingham K W D, Esirkepov T 2001 Nature 439 445

    [4]

    Forslund D W, Shonk C R 1970 Phys. Rev. Lett. 25 1699

    [5]

    Silva L O, Marti M, Davies J R, Fonseca R A, Ren C, Tsung F S, Mori W B 2004 Phys. Rev. Lett. 92 015002

    [6]

    Wei M S, Mangles S P D, Najmudin Z, Walton B, Gopal A, Tatarakis M, Dangor A E, Clark E L, Evans R G, Fritzler S, Clarke R J, Hernandez-Gomez C, Neely D, Mori W, Tzoufras M, Krushelnick K 2004 Phys. Rev. Lett. 93 155003

    [7]

    Keshet U, Waxman E 2005 Phys. Rev. Lett. 94 111102

    [8]

    Lee R E, Chapman S C, Dendy R O 2005 Phys. Plasma 12 012901

    [9]

    Habara H, Lancaster K L, Karsch S, Murphy C D, Norreys P A, Evans R G, Borghesi M, Romagnani L, Zepf M, Norimatsu T, Toyama Y, Kodama R, King J A, Snavely R, Akli K, Zhang B, Freeman R, Hatchett S, MacKinnon A J, Patel P, Key M H, Stoeckl C, Stephens R B, Fonseca R A, Silva L O 2004 Phys. Rev. E 70 046414

    [10]

    Honzawa T 1973 Plasma Physics 15 467

    [11]

    Devaux D, Fabbro R, Tollier L, Bartnicki E 1993 J. Appl. Phys. 74 2268

    [12]

    Humières E, Lefebvre E, Gremillet L, Malka V 2005 Phys. Plasma 12 062704

    [13]

    Sato M, Ohsawa Y 2006 Phys. Plasma 13 063110

    [14]

    Ucer D, Shapiro V D 2001 Phys. Rev. Lett. 87 075001

    [15]

    Sagdeev R Z 1966 Rev. Plasma Phys. 4 23

    [16]

    Ness N F, Searce C S, Seek J B 1964 J. Geophys. Res. 69 3531

    [17]

    Bell A R 1978 Mon. Not. R. Astron. Soc. 182 147

    [18]

    Blandford R D, Ostriker J P 1978 Astrophys. J. Lett. 221 L29

    [19]

    Axford W I, Leer E, McKenzie J F 1982 Astron. Astrophys. 111 317

    [20]

    Lee M A, Fisk L A 1982 Space Sci. Rev. 32 205

    [21]

    Koyama K, Petre R, Gotthelf E V, Hwang U, Matsuura M, Ozaki M, Holt S S 1995 Nature 378 255

    [22]

    Vink J, Laming J M 2003 Appl. Phys. J. 584 758

    [23]

    Volk H J, Berezhko E G, Ksenofontov L T 2005 Astron. Astrophys. 433 229

    [24]

    Drake R P 2000 Phys. Plasmas 7 4690

    [25]

    Pfeffermann E, Aschenbach B 1996 in Zimmermann H U, Truemper J E, Yorke H ed.: Röntgenstrahlung from the Universe (Report 263 MPE, Garching) 267-268

    [26]

    Hinton J A 2004 Astron. Rev. 48 331

    [27]

    Hofmann W 2003 Proc. 28th ICRC Tsukuba (Tokyo:Univ. Academy Press) p2811

    [28]

    Uchiyama Y, Aharonian F A, Tanaka T, Takahashi T, Maeda Y 2007 Nature 449 576U

    [29]

    Xu H 2002 Ph. D. Dissertation (Changsha: Graduate School of National Defense Science and Technology University) (in Chinese) [徐涵 2002 博士学位论文 (长沙; 国防科学技术大学研究生院)]

    [30]

    Ma Y Y 2004 Ph. D. Dissertation (Changsha: Graduate School of National Defense Science and Technology University) (in Chinese) [马燕云 2004 博士学位论文 (长沙; 国防科学技术大学研究生院)]

    [31]

    Shao F Q 2002 Particle Simulations in Plasma (Beijing: Science Press) (in Chinese) [邵福球 2002 等离子体粒子模拟(北京: 科学出版社)]

    [32]

    Zheng J 2006 Ph. D. Dissertation (Beijing: Institute of Physics, Chinese Academy of Sciences) (in Chinese) [郑君 2006 博士学位论文 (北京: 中国科学院物理研究所)]

    [33]

    Chen M 2007 Ph. D. Dissertation (Beijing: Institute of Physics, Chinese Academy of Sciences) (in Chinese) [陈民 2007 博士学位论文 (北京: 中国科学院物理研究所)]

    [34]

    He M Q 2008 Ph. D. Dissertation (Beijing: Institute of Physics, Chinese Academy of Sciences) (in Chinese) [何民卿 2008 博士学位论文 (北京: 中国科学院物理研究所)]

    [35]

    Clark E L, Krushelnick K, Davies J R, Zepf M, Tatarakis M, Beg F N, Machacek A, Norreys P A, Santala M I K, Watts I, Dangor A E 2000 Phys. Rev. Lett. 84 670

    [36]

    Mason R J, Tabak M 1998 Phys. Rev. Lett. 80 524

    [37]

    Lasinski B F, Langdon A B, Hatchett S P, Key M H, Tabak M 1999 Phys. Plasmas 6 2041

    [38]

    Kingham R J, Bell A R 2002 Phys. Rev. Lett. 84 045004

    [39]

    He M Q, Dong Q L, Sheng Z M, Weng S M, Chen M, Wu H C, Zhang J 2009 Acta Phys. Sin. 58 363 (in Chinese) [何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰 2009 物理学报 58 363]

    [40]

    He M Q, Dong Q L, Sheng Z M, Weng S M, Chen M, Wu H C, Zhang J 2007 Phys. Rev. E 76 035402(R)

    [41]

    Chen M, Sheng Z M, Dong Q L, He M Q, Li Y T, Muhammad A B, Zhang J 2007 Phys. Plasmas 14 053120

    [42]

    Chen M, Sheng Z M, Dong Q L, He M Q, Weng S M, Li Y T, Zhang J 2007 Phys. Plasmas 14 113106

    [43]

    Denavit J 1992 Phys. Rev. Lett. 69 3052

    [44]

    Nakamura T, Kawata S 2003 Phys. Rev. E 67 026403

    [45]

    Völk H J, Berezhko E G, Ksenofontov L T 2005 Astron. Astrophys. 433 229

  • [1]

    Yuan D W, Li Y T 2015 Chin. Phys. B 24 015204

    [2]

    Hegelich B M, Albright B J, Cobble J, Flippo K, Letzring S, Paffett M, Ruhl H, Schreiber J, Schulze R K, Fernández J C 2001 Nature 439 441

    [3]

    Schwoerer H, Pfotenhauer S, Jäckel O, Amthor K U, Liesfeld B, Ziegler W, Sauerbrey R, Ledingham K W D, Esirkepov T 2001 Nature 439 445

    [4]

    Forslund D W, Shonk C R 1970 Phys. Rev. Lett. 25 1699

    [5]

    Silva L O, Marti M, Davies J R, Fonseca R A, Ren C, Tsung F S, Mori W B 2004 Phys. Rev. Lett. 92 015002

    [6]

    Wei M S, Mangles S P D, Najmudin Z, Walton B, Gopal A, Tatarakis M, Dangor A E, Clark E L, Evans R G, Fritzler S, Clarke R J, Hernandez-Gomez C, Neely D, Mori W, Tzoufras M, Krushelnick K 2004 Phys. Rev. Lett. 93 155003

    [7]

    Keshet U, Waxman E 2005 Phys. Rev. Lett. 94 111102

    [8]

    Lee R E, Chapman S C, Dendy R O 2005 Phys. Plasma 12 012901

    [9]

    Habara H, Lancaster K L, Karsch S, Murphy C D, Norreys P A, Evans R G, Borghesi M, Romagnani L, Zepf M, Norimatsu T, Toyama Y, Kodama R, King J A, Snavely R, Akli K, Zhang B, Freeman R, Hatchett S, MacKinnon A J, Patel P, Key M H, Stoeckl C, Stephens R B, Fonseca R A, Silva L O 2004 Phys. Rev. E 70 046414

    [10]

    Honzawa T 1973 Plasma Physics 15 467

    [11]

    Devaux D, Fabbro R, Tollier L, Bartnicki E 1993 J. Appl. Phys. 74 2268

    [12]

    Humières E, Lefebvre E, Gremillet L, Malka V 2005 Phys. Plasma 12 062704

    [13]

    Sato M, Ohsawa Y 2006 Phys. Plasma 13 063110

    [14]

    Ucer D, Shapiro V D 2001 Phys. Rev. Lett. 87 075001

    [15]

    Sagdeev R Z 1966 Rev. Plasma Phys. 4 23

    [16]

    Ness N F, Searce C S, Seek J B 1964 J. Geophys. Res. 69 3531

    [17]

    Bell A R 1978 Mon. Not. R. Astron. Soc. 182 147

    [18]

    Blandford R D, Ostriker J P 1978 Astrophys. J. Lett. 221 L29

    [19]

    Axford W I, Leer E, McKenzie J F 1982 Astron. Astrophys. 111 317

    [20]

    Lee M A, Fisk L A 1982 Space Sci. Rev. 32 205

    [21]

    Koyama K, Petre R, Gotthelf E V, Hwang U, Matsuura M, Ozaki M, Holt S S 1995 Nature 378 255

    [22]

    Vink J, Laming J M 2003 Appl. Phys. J. 584 758

    [23]

    Volk H J, Berezhko E G, Ksenofontov L T 2005 Astron. Astrophys. 433 229

    [24]

    Drake R P 2000 Phys. Plasmas 7 4690

    [25]

    Pfeffermann E, Aschenbach B 1996 in Zimmermann H U, Truemper J E, Yorke H ed.: Röntgenstrahlung from the Universe (Report 263 MPE, Garching) 267-268

    [26]

    Hinton J A 2004 Astron. Rev. 48 331

    [27]

    Hofmann W 2003 Proc. 28th ICRC Tsukuba (Tokyo:Univ. Academy Press) p2811

    [28]

    Uchiyama Y, Aharonian F A, Tanaka T, Takahashi T, Maeda Y 2007 Nature 449 576U

    [29]

    Xu H 2002 Ph. D. Dissertation (Changsha: Graduate School of National Defense Science and Technology University) (in Chinese) [徐涵 2002 博士学位论文 (长沙; 国防科学技术大学研究生院)]

    [30]

    Ma Y Y 2004 Ph. D. Dissertation (Changsha: Graduate School of National Defense Science and Technology University) (in Chinese) [马燕云 2004 博士学位论文 (长沙; 国防科学技术大学研究生院)]

    [31]

    Shao F Q 2002 Particle Simulations in Plasma (Beijing: Science Press) (in Chinese) [邵福球 2002 等离子体粒子模拟(北京: 科学出版社)]

    [32]

    Zheng J 2006 Ph. D. Dissertation (Beijing: Institute of Physics, Chinese Academy of Sciences) (in Chinese) [郑君 2006 博士学位论文 (北京: 中国科学院物理研究所)]

    [33]

    Chen M 2007 Ph. D. Dissertation (Beijing: Institute of Physics, Chinese Academy of Sciences) (in Chinese) [陈民 2007 博士学位论文 (北京: 中国科学院物理研究所)]

    [34]

    He M Q 2008 Ph. D. Dissertation (Beijing: Institute of Physics, Chinese Academy of Sciences) (in Chinese) [何民卿 2008 博士学位论文 (北京: 中国科学院物理研究所)]

    [35]

    Clark E L, Krushelnick K, Davies J R, Zepf M, Tatarakis M, Beg F N, Machacek A, Norreys P A, Santala M I K, Watts I, Dangor A E 2000 Phys. Rev. Lett. 84 670

    [36]

    Mason R J, Tabak M 1998 Phys. Rev. Lett. 80 524

    [37]

    Lasinski B F, Langdon A B, Hatchett S P, Key M H, Tabak M 1999 Phys. Plasmas 6 2041

    [38]

    Kingham R J, Bell A R 2002 Phys. Rev. Lett. 84 045004

    [39]

    He M Q, Dong Q L, Sheng Z M, Weng S M, Chen M, Wu H C, Zhang J 2009 Acta Phys. Sin. 58 363 (in Chinese) [何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰 2009 物理学报 58 363]

    [40]

    He M Q, Dong Q L, Sheng Z M, Weng S M, Chen M, Wu H C, Zhang J 2007 Phys. Rev. E 76 035402(R)

    [41]

    Chen M, Sheng Z M, Dong Q L, He M Q, Li Y T, Muhammad A B, Zhang J 2007 Phys. Plasmas 14 053120

    [42]

    Chen M, Sheng Z M, Dong Q L, He M Q, Weng S M, Li Y T, Zhang J 2007 Phys. Plasmas 14 113106

    [43]

    Denavit J 1992 Phys. Rev. Lett. 69 3052

    [44]

    Nakamura T, Kawata S 2003 Phys. Rev. E 67 026403

    [45]

    Völk H J, Berezhko E G, Ksenofontov L T 2005 Astron. Astrophys. 433 229

  • [1] 李天成, 章晓海, 盛正卯. 激光入射双层等离子体靶产生的表面等离子体波及应用. 物理学报, 2023, 72(4): 045201. doi: 10.7498/aps.72.20221305
    [2] 祝昕哲, 李博原, 刘峰, 李建龙, 毕择武, 鲁林, 远晓辉, 闫文超, 陈民, 陈黎明, 盛政明, 张杰. 面向激光等离子体尾波加速的毛细管放电实验研究. 物理学报, 2022, 71(9): 095202. doi: 10.7498/aps.71.20212435
    [3] 赵佳羿, 胡鹏, 王雨林, 王金灿, 唐桧波, 胡广月. 用于激光等离子体中脉冲强磁场产生的电感耦合线圈. 物理学报, 2021, 70(16): 165202. doi: 10.7498/aps.70.20210441
    [4] 祝昕哲, 刘维媛, 陈民. 锐真空-等离子体边界倾角对激光尾波场加速中电子注入的影响. 物理学报, 2020, 69(3): 035201. doi: 10.7498/aps.69.20191332
    [5] 王伟民, 张亮亮, 李玉同, 盛政明, 张杰. 激光在大气中驱动的强太赫兹辐射的理论和实验研究. 物理学报, 2018, 67(12): 124202. doi: 10.7498/aps.67.20180564
    [6] 王宬朕, 董全力, 刘苹, 吴奕莹, 盛政明, 张杰. 激光等离子体中高能电子各向异性压强的粒子模拟. 物理学报, 2017, 66(11): 115203. doi: 10.7498/aps.66.115203
    [7] 周雯, 季珂, 陈鹤鸣. 基于平行磁控的磁化等离子体光子晶体THz波调制器. 物理学报, 2017, 66(5): 054210. doi: 10.7498/aps.66.054210
    [8] 薄勇, 赵青, 罗先刚, 范佳, 刘颖, 刘建卫. 电磁波在时变磁化等离子体信道中通信性能的实验研究. 物理学报, 2016, 65(5): 055201. doi: 10.7498/aps.65.055201
    [9] 陈茂林, 夏广庆, 毛根旺. 多模式离子推力器栅极系统三维粒子模拟仿真. 物理学报, 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [10] 陈兆权, 殷志祥, 陈明功, 刘明海, 徐公林, 胡业林, 夏广庆, 宋晓, 贾晓芬, 胡希伟. 负偏压离子鞘及气体压强影响表面波放电过程的粒子模拟. 物理学报, 2014, 63(9): 095205. doi: 10.7498/aps.63.095205
    [11] 陈兆权, 夏广庆, 刘明海, 郑晓亮, 胡业林, 李平, 徐公林, 洪伶俐, 沈昊宇, 胡希伟. 气体压强及表面等离激元影响表面波等离子体电离发展过程的粒子模拟. 物理学报, 2013, 62(19): 195204. doi: 10.7498/aps.62.195204
    [12] 令维军, 董全力, 张蕾, 张少刚, 董忠, 魏凯斌, 王首钧, 何民卿, 盛政明, 张杰. 高密度平面靶等离子体中激光驱动冲击波加速离子的能谱展宽. 物理学报, 2011, 60(7): 075201. doi: 10.7498/aps.60.075201
    [13] 杨宏伟, 袁 洪, 陈如山, 杨 阳. 各向异性磁化等离子体的SO-FDTD算法. 物理学报, 2007, 56(3): 1443-1446. doi: 10.7498/aps.56.1443
    [14] 刘少斌, 顾长青, 周建江, 袁乃昌. 磁化等离子体光子晶体的FDTD分析. 物理学报, 2006, 55(3): 1283-1288. doi: 10.7498/aps.55.1283
    [15] 巩华荣, 宫玉彬, 魏彦玉, 唐昌建, 薛东海, 王文祥. 考虑到束-波相互作用的速调管离子噪声二维模拟. 物理学报, 2006, 55(10): 5368-5374. doi: 10.7498/aps.55.5368
    [16] 卓红斌, 胡庆丰, 刘 杰, 迟利华, 张文勇. 超短脉冲激光与稀薄等离子体相互作用的准静态粒子模拟研究. 物理学报, 2005, 54(1): 197-201. doi: 10.7498/aps.54.197
    [17] 刘少斌, 莫锦军, 袁乃昌. 各向异性磁等离子体的辅助方程FDTD算法. 物理学报, 2004, 53(7): 2233-2236. doi: 10.7498/aps.53.2233
    [18] 刘少斌, 莫锦军, 袁乃昌. 各向异性磁化等离子体JEC-FDTD算法. 物理学报, 2004, 53(3): 783-787. doi: 10.7498/aps.53.783
    [19] 简广德, 董家齐. 环形等离子体中电子温度梯度不稳定性的粒子模拟. 物理学报, 2003, 52(7): 1656-1662. doi: 10.7498/aps.52.1656
    [20] 唐德礼, 孙爱萍, 邱孝明. 均匀磁化等离子体与雷达波相互作用的数值分析. 物理学报, 2002, 51(8): 1724-1729. doi: 10.7498/aps.51.1724
计量
  • 文章访问数:  5179
  • PDF下载量:  361
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-27
  • 修回日期:  2014-12-08
  • 刊出日期:  2015-05-05

/

返回文章
返回