搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宽入射角度偏振不敏感高效异常反射梯度超表面

刘桐君 习翔 令永红 孙雅丽 李志伟 黄黎蓉

引用本文:
Citation:

宽入射角度偏振不敏感高效异常反射梯度超表面

刘桐君, 习翔, 令永红, 孙雅丽, 李志伟, 黄黎蓉

Polarization-insensitive and broad-angle gradient metasurface with high-efficiency anomalous reflection

Liu Tong-Jun, Xi Xiang, Ling Yong-Hong, Sun Ya-Li, Li Zhi-Wei, Huang Li-Rong
PDF
导出引用
  • 偏振不敏感超表面在实际应用中具有重要意义, 本文提出了一种光通信波段的、对偏振不敏感的异常反射式梯度超表面, 这种超表面对于x-偏振和y-偏振入射光都能够实现高效率的异常反射, 表现出偏振不敏感特性, 为解决传统反射式超表面的偏振敏感性问题提供了一种新途径. 它采用金属(Au)-绝缘层(SiO2)-金属(Au)结构, 超表面的超晶胞由五个各向同性的、尺寸不同的十字形基本结构单元组成. 仿真结果表明, 这种超表面结构对不同线偏振入射平面光波有几乎相同的相位和振幅响应; 合理的选取五个基本结构单元的尺寸, 在一个超晶胞内实现了2up 相位的覆盖, 反射光波阵面畸变小, 而且反射光都集中到异常反射级次, 在工作波长1480 nm处具有较高的异常反射率(~ 70%). 此外, 这种结构的超表面在-300的宽入射角度范围内都具有偏振不敏感的异常反射特性. 在光通信、光信号处理、显示成像等领域具有潜在的应用前景.
    Polarization-insensitive metasurfaces are of great value in practical applications. In this paper, we present a polarization-insensitive reflective phase-gradient metasurface operating in optical communication band which has almost the same electromagnetic (EM) responses for both x-and y-polarized incident waves with high-efficiency anomalous reflection.The reflective metasurface employs a typical metal (Au)-insulator (SiO2)-metal (Au) structure, in which the top metal layer consists of periodic arrays of isotropic cross-shaped gold antennas, i.e. unit cells. The supercell of the metasurface is composed of five unit cells with their dimensions different from each other. The normally incident waves are reflected by the metal-grounded plane, but the reflection phases of both x-and y-polarized waves are controlled by changing the dimensions of their unit cells. Based on the finite-difference time-domain simulations, we investigate the polarization-dependent EM responses of this metasurface under the illumination of linearly polarized incident plane waves. Selecting carefully five cross-shaped gold antennas in different dimensions, we obtain polarization-insensitive metasurface with high-performance anomalous reflection in optical communication band.First, in order to investigate the polarization sensitivity of the proposed metasurface, we study the EM responses for x-and y-polarized incident waves, since arbitrary linearly-polarized EM waves can be separated into two orthogonally-polarized components. We find that the two orthogonally-polarized incident EM waves have almost the same phase and amplitude response with the phase nearly linearly changing from 0 to 2up within a supercell, hence a constant gradient of phase discontinuity is introduced and anomalous reflection will occur. We further analyze the reflected electric-field patterns and the far-field intensity distributions, from which we find that the reflected beams exhibit low-distortion wavefronts and the scattered light is predominantly reflected into the anomalous mode. As a consequence, high-efficiency anomalous reflection is realized, with a 70% reflectivity at the operating wavelength of 1480 nm. Furthermore, we look into the incident-angle dependence of the proposed metasurface, and find that the designed metasurface can exhibit polarization insensitivity within a broad incident angle ranging from -30 to 0.In conclusion, we propose a broad-angle polarization-insensitive reflective gradient metasurface with high-efficiency anomalous reflection, which has potential applications in optical communications, signal processing, displaying, imaging and other fields.
      Corresponding author: Liu Tong-Jun, tongjun_liu@163.com;lrhuang@mail.hust.edu.cn ; Huang Li-Rong, tongjun_liu@163.com;lrhuang@mail.hust.edu.cn
    • Funds: Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20120142110064).
    [1]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [2]

    Sun S L, He Q, Xiao S Y, Xu Q, Li X, Zhou L 2012 Nature Mater. 11 426

    [3]

    Yu N, Capasso F 2014 Nature Mater. 13 139

    [4]

    SunY Y, Han L, Shi X Y, Wang Z N, Liu D H 2013 Acta Phys. Sin. 62 104201 (in Chinese) [孙彦彦, 韩璐, 史晓玉, 王兆娜, 刘大禾 2013 物理学报 62 104201]

    [5]

    Sun S L, He Q, Zhou L 2015 Physics 44 366 (in Chinese) [孙树林, 何琼, 周磊 2015 物理 44 366]

    [6]

    Wu C J, Cheng Y Z, Wang W Y, He B, Gong R Z 2015 Acta Phys. Sin. 64 164102 (in Chinese) [吴晨骏, 程用志, 王文颖, 何博, 龚荣洲. 2015 物理学报 64 164102]

    [7]

    He J, Wang X, Hu D, Ye J, Feng S, Kan Q, Zhang Y 2013 Opt. Express 21 20230

    [8]

    Aieta F, Genevet P, Yu N, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 1702-6

    [9]

    Chen X, Huang L, Mhlenbernd H, Li G, Bai B, Tan Q, Jin G, Cheah K K, Qiu C, Li J, Zentgraf T, Zhang S 2012 Nat. Commun. 3 1198

    [10]

    Huang L, Chen X, Mhlenbernd H, Zhang H, Chen S, Bai B, Tan Q, Jin G, Cheah K-K, Qiu C, Li J, Zentgraf T, Zhang S 2013 Nat. Commun. 4 2808

    [11]

    Alaee R, Farhat M, Rockstuhl C, Lederer F 2012 Opt. Express 20 28017

    [12]

    Chen H Y, Wang J Fu, Ma H, Qu S B, Zhang J Q, Xu Z, Zhang A X 2015 Chin. Phys. B 24 014201

    [13]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Zhou H, Xu Z, Zhang A X 2015 Chin. Phys. B 24 014202

    [14]

    Lee Y U, Kim J, Woo J H, Bang L H, Choi E Y, Kim E S, Wu J 2014 Opt. Express 22 20816

    [15]

    Xie Z, Wang X, Ye J, Feng S, Sun W, Akalin T, Zhang Y 2013 Sci. Rep. 3 3347

    [16]

    Bonod N, Popov E, Enoch S, Néauport 2006 J. Eur. Opt. Soc-Rapid 1 06029

    [17]

    Li Z W, Huang L R, Lu K, Sun Y L, Min L 2014 Appl. Phys. Express 7 112001

    [18]

    Sun S, Yang K, Wang C, Juan T, Chen W, Liao C, He Q, Xiao S, Kung W, Guo G, Zhou L, Tsai D P 2012 Nano Lett. 12 6223

    [19]

    Li Y, Liang B, Gu Z, Zou X, Cheng J 2013 Sci. Rep. 3 2546

    [20]

    Zhang L, Hao J, Qiu M, Zouhdi S, Yang J K W, Qiu C W 2014 Nanoscale 6 12303

    [21]

    Pors A, Albrektsen O, Radko I P, Bozhevolnyi S I 2013 Sci. Rep. 3 2155

    [22]

    Paul O, Imhof C, Lägel B, Wolff S, Heinrich J, Höfling S, Forchel A, Zengerle R, Beigang R, Rahm M 2009 Opt. Express 17 819

    [23]

    Ma H F, Wang G Z, Kong G S, Cui T J 2015 Sci. Rep. 5 9605

    [24]

    Cui T J, Qi M, Wan X, Zhao J, Cheng Q 2014 Light: Science & Applications 3e218

    [25]

    Liu S, Chen H, Cui T J 2015 Appl. Phys. Lett. 106 151601

  • [1]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [2]

    Sun S L, He Q, Xiao S Y, Xu Q, Li X, Zhou L 2012 Nature Mater. 11 426

    [3]

    Yu N, Capasso F 2014 Nature Mater. 13 139

    [4]

    SunY Y, Han L, Shi X Y, Wang Z N, Liu D H 2013 Acta Phys. Sin. 62 104201 (in Chinese) [孙彦彦, 韩璐, 史晓玉, 王兆娜, 刘大禾 2013 物理学报 62 104201]

    [5]

    Sun S L, He Q, Zhou L 2015 Physics 44 366 (in Chinese) [孙树林, 何琼, 周磊 2015 物理 44 366]

    [6]

    Wu C J, Cheng Y Z, Wang W Y, He B, Gong R Z 2015 Acta Phys. Sin. 64 164102 (in Chinese) [吴晨骏, 程用志, 王文颖, 何博, 龚荣洲. 2015 物理学报 64 164102]

    [7]

    He J, Wang X, Hu D, Ye J, Feng S, Kan Q, Zhang Y 2013 Opt. Express 21 20230

    [8]

    Aieta F, Genevet P, Yu N, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 1702-6

    [9]

    Chen X, Huang L, Mhlenbernd H, Li G, Bai B, Tan Q, Jin G, Cheah K K, Qiu C, Li J, Zentgraf T, Zhang S 2012 Nat. Commun. 3 1198

    [10]

    Huang L, Chen X, Mhlenbernd H, Zhang H, Chen S, Bai B, Tan Q, Jin G, Cheah K-K, Qiu C, Li J, Zentgraf T, Zhang S 2013 Nat. Commun. 4 2808

    [11]

    Alaee R, Farhat M, Rockstuhl C, Lederer F 2012 Opt. Express 20 28017

    [12]

    Chen H Y, Wang J Fu, Ma H, Qu S B, Zhang J Q, Xu Z, Zhang A X 2015 Chin. Phys. B 24 014201

    [13]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Zhou H, Xu Z, Zhang A X 2015 Chin. Phys. B 24 014202

    [14]

    Lee Y U, Kim J, Woo J H, Bang L H, Choi E Y, Kim E S, Wu J 2014 Opt. Express 22 20816

    [15]

    Xie Z, Wang X, Ye J, Feng S, Sun W, Akalin T, Zhang Y 2013 Sci. Rep. 3 3347

    [16]

    Bonod N, Popov E, Enoch S, Néauport 2006 J. Eur. Opt. Soc-Rapid 1 06029

    [17]

    Li Z W, Huang L R, Lu K, Sun Y L, Min L 2014 Appl. Phys. Express 7 112001

    [18]

    Sun S, Yang K, Wang C, Juan T, Chen W, Liao C, He Q, Xiao S, Kung W, Guo G, Zhou L, Tsai D P 2012 Nano Lett. 12 6223

    [19]

    Li Y, Liang B, Gu Z, Zou X, Cheng J 2013 Sci. Rep. 3 2546

    [20]

    Zhang L, Hao J, Qiu M, Zouhdi S, Yang J K W, Qiu C W 2014 Nanoscale 6 12303

    [21]

    Pors A, Albrektsen O, Radko I P, Bozhevolnyi S I 2013 Sci. Rep. 3 2155

    [22]

    Paul O, Imhof C, Lägel B, Wolff S, Heinrich J, Höfling S, Forchel A, Zengerle R, Beigang R, Rahm M 2009 Opt. Express 17 819

    [23]

    Ma H F, Wang G Z, Kong G S, Cui T J 2015 Sci. Rep. 5 9605

    [24]

    Cui T J, Qi M, Wan X, Zhao J, Cheng Q 2014 Light: Science & Applications 3e218

    [25]

    Liu S, Chen H, Cui T J 2015 Appl. Phys. Lett. 106 151601

  • [1] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面. 物理学报, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [2] 张文英, 胡鹏, 肖游, 李浩, 尤立星. 高效、偏振不敏感超导纳米线单光子探测器. 物理学报, 2021, 70(18): 188501. doi: 10.7498/aps.70.20210486
    [3] 吴雨明, 王任, 丁霄, 王秉中. 基于等效介质原理的宽角超材料吸波体设计. 物理学报, 2020, 69(22): 224201. doi: 10.7498/aps.69.20201488
    [4] 吴雨明, 王任, 丁霄, 王秉中. 基于等效介质原理的宽角超材料吸波体设计*. 物理学报, 2020, (): . doi: 10.7498/aps.69.20201448
    [5] 丰茂昌, 李勇峰, 张介秋, 王甲富, 王超, 马华, 屈绍波. 一种宽角域散射增强超表面的研究. 物理学报, 2018, 67(19): 198101. doi: 10.7498/aps.67.20181053
    [6] 庄亚强, 王光明, 张小宽, 张晨新, 蔡通, 李海鹏. 基于梯度超表面的反射型线-圆极化转换器设计. 物理学报, 2016, 65(15): 154102. doi: 10.7498/aps.65.154102
    [7] 吴晨骏, 程用志, 王文颖, 何博, 龚荣洲. 基于十字形结构的相位梯度超表面设计与雷达散射截面缩减验证. 物理学报, 2015, 64(16): 164102. doi: 10.7498/aps.64.164102
    [8] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 二维宽带相位梯度超表面设计及实验验证. 物理学报, 2015, 64(9): 094101. doi: 10.7498/aps.64.094101
    [9] 范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学. 基于交叉极化旋转相位梯度超表面的宽带异常反射. 物理学报, 2015, 64(18): 184101. doi: 10.7498/aps.64.184101
    [10] 王丛屹, 徐成, 伍瑞新. 用最小结构单元频率选择表面实现大入射角宽频带的透波材料. 物理学报, 2014, 63(13): 137803. doi: 10.7498/aps.63.137803
    [11] 李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证. 物理学报, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [12] 邹涛波, 胡放荣, 肖靖, 张隆辉, 刘芳, 陈涛, 牛军浩, 熊显名. 基于超材料的偏振不敏感太赫兹宽带吸波体设计. 物理学报, 2014, 63(17): 178103. doi: 10.7498/aps.63.178103
    [13] 鲁磊, 屈绍波, 施宏宇, 张安学, 张介秋, 马华. 基于宽边耦合螺旋结构的低频小型化极化不敏感超材料吸波体. 物理学报, 2013, 62(15): 158102. doi: 10.7498/aps.62.158102
    [14] 洪亮, 杨陈楹, 沈伟东, 叶辉, 章岳光, 刘旭. 基于亚波长二维光栅的入射角不敏感颜色滤光片研究. 物理学报, 2013, 62(6): 064204. doi: 10.7498/aps.62.064204
    [15] 顾超, 屈绍波, 裴志斌, 徐卓, 马华, 林宝勤, 柏鹏, 彭卫东. 一种极化不敏感和双面吸波的手性超材料吸波体. 物理学报, 2011, 60(10): 107801. doi: 10.7498/aps.60.107801
    [16] 顾超, 屈绍波, 裴志斌, 徐卓, 刘嘉, 顾巍. 准全向平板超材料吸波体的设计. 物理学报, 2011, 60(3): 037801. doi: 10.7498/aps.60.037801
    [17] 远晓辉, 李玉同, 徐妙华, 郑志远, 梁文锡, 于全芝, 张 翼, 王兆华, 令维军, 魏志义, 赵 卫, 张 杰. 激光入射角对靶面方向超热电子发射的影响. 物理学报, 2006, 55(11): 5899-5904. doi: 10.7498/aps.55.5899
    [18] 张光寅. 热不敏感腔的解与特征. 物理学报, 1991, 40(3): 407-413. doi: 10.7498/aps.40.407
    [19] 邵其鋆, 霍裕昆, 陈建新, 吴士明, 潘正瑛. 离子轰击入射角对溅射参数的影响. 物理学报, 1991, 40(4): 659-666. doi: 10.7498/aps.40.659
    [20] 张光寅, 王宝明. 晶体剩余反射带短波边弱振动反射光谱结构的异常敏感性. 物理学报, 1984, 33(9): 1306-1313. doi: 10.7498/aps.33.1306
计量
  • 文章访问数:  6407
  • PDF下载量:  583
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-14
  • 修回日期:  2015-08-15
  • 刊出日期:  2015-12-05

/

返回文章
返回