搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于磁光子晶体的低损耗窄带THz滤波器

滕晨晨 周雯 庄煜阳 陈鹤鸣

引用本文:
Citation:

基于磁光子晶体的低损耗窄带THz滤波器

滕晨晨, 周雯, 庄煜阳, 陈鹤鸣

Low loss and narrow-band THz filter based on magnetic photonic crystals

Teng Chen-Chen, Zhou Wen, Zhuang Yu-Yang, Chen He-Ming
PDF
导出引用
  • 本文提出一种采用石榴石型铁氧体磁性材料的太赫兹滤波器, 利用波导线缺陷和腔内点缺陷的耦合特性, 通过改变腔内介质柱半径及分布, 实现对某个波长的耦合, 达到了高效率滤波的功能; 改变外磁场的大小, 影响铁氧体材料的磁导率变化, 使谐振频率发生改变, 从而对THz波进行滤波. 应用平面波展开法(PWM)和时域差分有限法(FDTD)进行仿真分析, 研究结果表明, 该滤波器其插入损耗为0.0997 dB, 3 dB带宽为8.22 GHz, 实现了低损耗窄带滤波.
    As a key point to applying and studying magnetic photonic crystal technology, communication devices such as the magnetic photonic crystal filters with high performance and easy integration are developed. We investigate the feasibility of ferrite magnetism materials that can be used to make photonic crystal filters. The optical properties of the magnetic materials may be tuned by adjusting the magnetic field or temperature. The band gap of the magnetic photonic crystal can thus be transferred by changing the external magnetic field. This kind of magnetic photonic crystal has a great application prospect. A low insertion loss and narrow-band filter is designed based on a magnetic field-controlled ferrite defect in a photonic crystal for a terahertz (THz) wave. Ferrite is a ferromagnetic metal oxide with high dielectric constant, low saturation magnetization intensity, and high magnetic permeability at high frequencies. According to the crystal structure it can be divided into three categories: spinel, garnet and magnetic rock types. The garnet ferrite crystal can be used to realize THz band transmission, and its absorption coefficient is low (0.05-0.3) in uniform polarization. In this paper, a novel magnetic THz photonic crystal filter is proposed, in which point defects are produced by the introduction of garnet ferrite magnetic materials. Based on the coupling characteristics between the linear defect wave guide and the point defects, THz wave with a certain wave length can be well coupled by changing the radius and arrangement of the resonant cavity, so as to achieve high efficiency filter function. The permeability properties of ferrite magnetic materials are changed with the variation of the intensity of the external magnetic field, and the tuning of the frequency of the resonance mode. The optical properties of the filter are analyzed in detail by using plane waves method(PWM) in finite difference time domain(FDTD). Simulation results show that by changing the point defect structure and the radius of a certain dielectric cylinder, the insertion loss and 3 dB bandwidth of the filter are 0.0997 dB and 8.22 GHz, respectively.
      通信作者: 陈鹤鸣, chhm@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61077084, 61571237)和江苏省研究生科研创新计划项目(批准号: KYLX15_0835)资助的课题.
      Corresponding author: Chen He-Ming, chhm@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61077084, 61571237) and the Plans for Graduate Research and Innovation of the Colleges and Univesities in Jiangsu Province, China (Grant No. KYLX15_0835).
    [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    Zhao D T, Shi B, Jiang Z M, Fan Y L, Wang X 2002 Appl. Phys. Lett. 81 409

    [4]

    Park I, Lee H S, Kim H J, Moom K M, Lee S G, O B H, Park S G, Lee E H 2004 Opt. Express 12 3599

    [5]

    Zimmermann J, Kamp M, Forchel A, Marz R 2004 Opt. Commun. 230 387

    [6]

    Chien F S, Hsu Y, Hsieh W, Cheng S 2004 Opt. Express 12 1119

    [7]

    Yuan C, Xu S L, Yao J Q, Zhao X L, Cao X L, Wu L 2014 Chin. Phys. B 23 018102

    [8]

    Zhang H Y, Gao Y, Zhang Y P, Wang S F 2011 Chin. Phys. B 20 094101

    [9]

    Yang C Y, Xu X M, Ye T, Miao L P 2011 Acta Phys. Sin. 60 017807 (in Chinese) [杨春云, 徐旭明, 叶涛, 缪路平 2011 物理学报 60 017807]

    [10]

    Chen H M, Meng Q 2011 Acta Phys. Sin. 60 014202 (in Chinese) [陈鹤鸣, 孟晴 2011 物理学报 60 014202]

    [11]

    Gu Y, Wu R X 2014 Piezoelectrics Acoustooptics 36 58 (in Chinese) [顾艳, 伍瑞新 2014 压电与声光 36 58]

    [12]

    Guo Z, Fan F, Bai J J, Niu C, Chang S J 2011 Acta Phys. Sini. 60 (in Chinese) [郭展, 范飞, 白晋军,牛超, 常胜江 2011 物理学报 60]

    [13]

    Li S P, Liu H J, Sun Q B, Huang N 2015 IEEE Photonics Technology Letters 27 752

    [14]

    Zhang H W, Li J, Su H, Zhou T C, Long Y, Zheng Z L 2013 Chin. Phys. B 22 117504

    [15]

    Sigalas M M, Soukoulis C M, Biswas R 1997 Phys. Rev. B 56 959

    [16]

    Kee C S, Jae-Eun K, Hae Y P 2000 Phys. Rev. B 61 15523

    [17]

    Pozar D M 1998 Microwave Engineering (New York: Wiley) p705

    [18]

    Zhou Z G 1998 Ferrite Magnetism Materials (Beijing: Science Press) p12 (in Chinese) [周志刚 1998 铁氧体磁性材料 (北京: 科学出版社) 第12页]

    [19]

    Yang Q H, Zhang H W, Liu Y L 2008 Chin. Phys. Lett. 25 3957

  • [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    Zhao D T, Shi B, Jiang Z M, Fan Y L, Wang X 2002 Appl. Phys. Lett. 81 409

    [4]

    Park I, Lee H S, Kim H J, Moom K M, Lee S G, O B H, Park S G, Lee E H 2004 Opt. Express 12 3599

    [5]

    Zimmermann J, Kamp M, Forchel A, Marz R 2004 Opt. Commun. 230 387

    [6]

    Chien F S, Hsu Y, Hsieh W, Cheng S 2004 Opt. Express 12 1119

    [7]

    Yuan C, Xu S L, Yao J Q, Zhao X L, Cao X L, Wu L 2014 Chin. Phys. B 23 018102

    [8]

    Zhang H Y, Gao Y, Zhang Y P, Wang S F 2011 Chin. Phys. B 20 094101

    [9]

    Yang C Y, Xu X M, Ye T, Miao L P 2011 Acta Phys. Sin. 60 017807 (in Chinese) [杨春云, 徐旭明, 叶涛, 缪路平 2011 物理学报 60 017807]

    [10]

    Chen H M, Meng Q 2011 Acta Phys. Sin. 60 014202 (in Chinese) [陈鹤鸣, 孟晴 2011 物理学报 60 014202]

    [11]

    Gu Y, Wu R X 2014 Piezoelectrics Acoustooptics 36 58 (in Chinese) [顾艳, 伍瑞新 2014 压电与声光 36 58]

    [12]

    Guo Z, Fan F, Bai J J, Niu C, Chang S J 2011 Acta Phys. Sini. 60 (in Chinese) [郭展, 范飞, 白晋军,牛超, 常胜江 2011 物理学报 60]

    [13]

    Li S P, Liu H J, Sun Q B, Huang N 2015 IEEE Photonics Technology Letters 27 752

    [14]

    Zhang H W, Li J, Su H, Zhou T C, Long Y, Zheng Z L 2013 Chin. Phys. B 22 117504

    [15]

    Sigalas M M, Soukoulis C M, Biswas R 1997 Phys. Rev. B 56 959

    [16]

    Kee C S, Jae-Eun K, Hae Y P 2000 Phys. Rev. B 61 15523

    [17]

    Pozar D M 1998 Microwave Engineering (New York: Wiley) p705

    [18]

    Zhou Z G 1998 Ferrite Magnetism Materials (Beijing: Science Press) p12 (in Chinese) [周志刚 1998 铁氧体磁性材料 (北京: 科学出版社) 第12页]

    [19]

    Yang Q H, Zhang H W, Liu Y L 2008 Chin. Phys. Lett. 25 3957

  • [1] 周晓霞, 陈英, 蔡力. 基于零折射率介质的超窄带光学滤波器. 物理学报, 2023, 72(17): 174205. doi: 10.7498/aps.72.20230394
    [2] 张若羽, 李培丽. 基于一维耦合腔光子晶体的声光可调谐平顶滤波器的研究. 物理学报, 2021, 70(5): 054208. doi: 10.7498/aps.70.20201461
    [3] 周铭杰, 谭海云, 周岩, 诸葛兰剑, 吴雪梅. 一种基于束缚态的可调等离子体光子晶体窄带滤波器. 物理学报, 2021, 70(17): 175201. doi: 10.7498/aps.70.20210241
    [4] 周雯, 季珂, 陈鹤鸣. 基于平行磁控的磁化等离子体光子晶体THz波调制器. 物理学报, 2017, 66(5): 054210. doi: 10.7498/aps.66.054210
    [5] 庄煜阳, 周雯, 季珂, 陈鹤鸣. 一种双反射壁型二维光子晶体窄带滤波器. 物理学报, 2015, 64(22): 224202. doi: 10.7498/aps.64.224202
    [6] 杨春云, 徐旭明, 叶涛, 缪路平. 一种新型可调制的光子晶体环形腔滤波器. 物理学报, 2011, 60(1): 017807. doi: 10.7498/aps.60.017807
    [7] 陈鹤鸣, 孟晴. 高效光子晶体太赫兹滤波器的设计. 物理学报, 2011, 60(1): 014202. doi: 10.7498/aps.60.014202
    [8] 陈凡, 郝军, 李红根, 曹庄琪. 基于古斯-汉欣位移的双通道窄带滤波器. 物理学报, 2011, 60(7): 074223. doi: 10.7498/aps.60.074223
    [9] 郭展, 范飞, 白晋军, 牛超, 常胜江. 基于磁光子晶体的磁控可调谐太赫兹滤波器和开关. 物理学报, 2011, 60(7): 074218. doi: 10.7498/aps.60.074218
    [10] 王卓, 王与烨, 姚建铨, 王鹏. 周期结构GaAs晶体ps脉冲差频产生窄带THz辐射的研究. 物理学报, 2010, 59(5): 3249-3254. doi: 10.7498/aps.59.3249
    [11] 薛晖, 郑臻荣, 顾培夫, 张锦龙, 沈伟东, 陈海星. 一种新型的低角度效应的滤波器. 物理学报, 2009, 58(6): 3983-3987. doi: 10.7498/aps.58.3983
    [12] 廖栽宜, 赵玲娟, 张云霄, 边静, 潘教青, 王圩. 一种利用光电流和光透过曲线测量电吸收调制器插入损耗因素的方法. 物理学报, 2009, 58(5): 3135-3139. doi: 10.7498/aps.58.3135
    [13] 张 姗, 吴福全, 吴闻迪. 多级石英晶体旋光光学滤波器的滤波特性. 物理学报, 2008, 57(8): 5020-5026. doi: 10.7498/aps.57.5020
    [14] 许静平, 王立刚, 羊亚平. 利用含负折射率材料的光子晶体实现角度滤波器. 物理学报, 2006, 55(6): 2765-2770. doi: 10.7498/aps.55.2765
    [15] 周 梅, 陈效双, 王少伟, 张建标, 陆 卫. THz波段的F-P光子晶体滤波器. 物理学报, 2006, 55(7): 3725-3729. doi: 10.7498/aps.55.3725
    [16] 顾培夫, 陈海星, 秦小芸, 刘 旭. 基于薄膜光子晶体超晶格理论的偏振带通滤波器. 物理学报, 2005, 54(2): 773-776. doi: 10.7498/aps.54.773
    [17] 李宏成, 王瑞兰, 魏 斌, 郑东宁. 高温超导膜微波表面电阻Rs对微波滤波器插入损耗的贡献. 物理学报, 2005, 54(1): 359-363. doi: 10.7498/aps.54.359
    [18] 赵 莉, 陈赓华, 张利华, 黄旭光, 翟光杰, 李俊文, 汤玉林, 冯 稷. 互补型自适应滤波器在心磁信号处理中的应用. 物理学报, 2004, 53(12): 4420-4427. doi: 10.7498/aps.53.4420
    [19] 刘江涛, 周云松, 王福合, 顾本源. 光子晶体反常色散超窄带滤波理论. 物理学报, 2004, 53(10): 3336-3340. doi: 10.7498/aps.53.3336
    [20] 王 骐, 贾晓玲, 掌蕴东, 马祖光. 钾原子532nm可调谐超窄带光学滤波器的研究. 物理学报, 2003, 52(5): 1151-1156. doi: 10.7498/aps.52.1151
计量
  • 文章访问数:  6968
  • PDF下载量:  359
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-27
  • 修回日期:  2015-10-08
  • 刊出日期:  2016-01-20

/

返回文章
返回