搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超薄宽带平面聚焦超表面及其在高增益天线中的应用

侯海生 王光明 李海鹏 蔡通 郭文龙

引用本文:
Citation:

超薄宽带平面聚焦超表面及其在高增益天线中的应用

侯海生, 王光明, 李海鹏, 蔡通, 郭文龙

Ultra-thin broadband flat metasurface to focus electromagnetic waves and its application in high-gain antenna

Hou Hai-Sheng, Wang Guang-Ming, Li Hai-Peng, Cai Tong, Guo Wen-Long
PDF
导出引用
  • 针对相位梯度超表面在灵活操控电磁波与提高天线增益中的潜在应用, 提出一种新型的宽带超表面单元, 实现了在较宽频带范围内操控电磁波波前与提高天线增益. 本文首先设计了一种圆环十字形对称单元来控制反射波的相移量, 单元厚度为1 mm, 尺寸为0.3 0( 0=20 mm), 工作频段15-18 GHz, 而后验证了由该单元组成的相位梯度超表面在15-18 GHz范围内对电磁波的奇异反射与聚焦特性. 最后将设计的反射聚焦超表面应用于提高天线增益中, 仿真与测试结果均表明, 天线最高增益在15-18 GHz内平均增加了11 dB且-1 dB 增益带宽为15-18 GHz(相对带宽为18.2%). 由于厚度薄、重量轻、频带宽, 设计的该单元拓展了相位梯度超表面在微波领域的应用, 有望为高增益天线的实现提供新的方法.
    The phase gradient metasurface has strong abilities to manipulate electromagnetic waves on a subwavelength scale and has a potential to enhance the antenna gain. Based on the single multi-resonance metallic patch srtucture, we propose a new kind of ultra-thin broadband unit cell to manipulate electromagnetic waves and enhance the gain. It has been demonstrated that anomalous reflection can be achieved by utilizing the magnetic resonance between metallic patch and ground plane. Moreover, it is believed that resonance with low quality factor (Q factor) is useful in extending the working bandwidth. In order to extend the bandwidth of phase modulation, it is necessary to design a kind of low-Q unit cell. Besides, we need to extend the phase shift to cover the entire range [0, 360] to achieve the focusing effect. Thus we design a suitable symmetrical unit cell composed of ring and cross metallic patterns to control the phase of reflected waves. The symmetrical structure is useful for decreasing the Q factor so as to get a kind of low-Q unit cell. Theoretically, ring and cross metallic patch can be regarded as multi-resonance unit cells, which can cover the entire scope [0, 360]. The unit cell operates at 15-18 GHz with a thickness of 1 mm and the sides of 0.3 0( 0=20 mm). Furthermore, we design a phase gradient metasurface composed of the designed unit cell to verify the broadband anomalous reflection and focusing effects in CST Microwave Studio; the effect can be clearly illustrated in the simulation results obtained at 15-18 GHz. Due to the successful conversion from plane wave to quasi-spherical wave, we can place the Vivaldi antenna at the focal point of the metasurface as a feed source to transform the quasi-spherical wave to plane wave to enhance antenna gain. The simulation results are in good agreement with the theoretical analysis. Meanwhile, the designed metasurface and Vivaldi antenna have been fabricated and applied to enhance the gain of Vivaldi antenna. Both simulation and test results show that the peak gain has been averagely enhanced by 11 dB during the -1 dB gain bandwidth of 15-18 GHz and the fractional bandwidth is 18.2%. Moreover, due to the thin thickness, light weight and broad band, the designed unit cell may open up a new route for the applications of phase gradient metasurfaces in the microwave band region, and may also used as an alternative of high-gain antenna.
      通信作者: 王光明, wgming01@sina.com
    • 基金项目: 国家自然科学基金(批准号: 61372034)资助的课题.
      Corresponding author: Wang Guang-Ming, wgming01@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61372034).
    [1]

    Guo F, Du H L, Qu S B, Xia S, Xu Z, Zhao J F, Zhang H M 2015 Acta Phys. Sin. 64 077801 (in Chinese) [郭飞, 杜红亮, 屈绍波, 夏颂, 徐卓, 赵建峰, 张红梅 2015 物理学报 64 077801]

    [2]

    Liu G C, Li C, Fang G Y 2015 Chin. Phys. B 24 14101

    [3]

    Wu S, Huang X J, Xiao B X, Jin Y, Yang H L 2015 Chin. Phys. B 23 127805

    [4]

    Cai T, Wang G M, Liang J G, Zhuang Y Q 2014 Chin. Phys. Lett. 31 084101

    [5]

    Cai T, Wang G M, Zhang X F, Wang Y W, Zong B F, Xu H X 2015 IEEE Trans. Antennas Propag. 63 2306

    [6]

    Cai T, Wang G M, Zhang X F, Shi J P 2015 IEEE Antennas Wirel. Propag. Lett. 14 1072

    [7]

    Francesco M, Andrea A 2014 Chin. Phys. B 23 047809

    [8]

    Ni X, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M 2012 Science 335 427

    [9]

    Farmahini-Farahani M, Mosallaei H 2013 Opt. Lett. 38 462

    [10]

    Li X, Xiao S Y, Cai B G, He Q, Cui T J, Zhou L 2012 Opt. Lett. 37 4940

    [11]

    Wan X, Li Y B, Cai B G, Cui T J 2014 Appl. Phys. Lett. 105 151604

    [12]

    Luo J, Yu H L, Song M W, Zhang Z J 2014 Opt. Lett. 39 2229

    [13]

    Yu N F, Genevet P, Kats A M, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [14]

    Pu M B, Chen P, Wang C T, Wang Y Q, Zhao Z Y, Hu C G, Huang C, Luo X G 2013 AIP Advances 3 052136

    [15]

    Wei Z Y, Cao Y, Su X P, Gong Z J, Long Y, Li H Q 2013 Opt. Express 21 010739

    [16]

    Wang J F, Qu S B, Ma H, Xu Z, Zhang A X, Zhou H, Chen H Y, Li Y F 2012 Appl. Phys. Lett. 101 201104

    [17]

    Wang W S, Zhang L W, Zhang Y W, Fang K 2013 Acta Phys. Sin. 2013 62 024203 (in Chinese) [王五松, 张利伟, 张冶文, 方恺 2013 物理学报 62 024203]

    [18]

    Wang J F, Qu S B, Ma H, Xu Z, Zhang A X, Zhou H, Chen H Y, Li Y F 2012 Appl. Phys. Lett. 101 201104

    [19]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Wu X, Xu Z, Zhang A X 2015 Acta Phys. Sin. 64 094101 (in Chinese) [李永峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学 2015 物理学报 64 094101]

    [20]

    Huang L L, Chen X Z, Bai B F, Tan Q F, Jin G F, Zentgraf T, Zhang S 2013 Light: Science Applications 2 e70

    [21]

    Huang L L, Chen X Z, Mhlenbernd H, Li G X, Bai B F, Tan Q F, Jin G F, Zentgraf T, Zhang S 2012 Nano Lett. 12 5750

    [22]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Pang Y Q, Xu Z, Zhang A X 2015 J. Appl. Phys. 117 044501

    [23]

    Wang J F, Qu S B, Xu Z, Ma H, Wang X H, Huang D Q, Li Y F 2012 Photon. Nanostruct. Fundam. Applic. 10 540

    [24]

    Aieta F, Genevent P, Kats M A, Yu N F, Blanchard R, Gaburro Z, Capasso F 2012 Nano Lett. 12 4932

    [25]

    Pors A, Nielsen M G, Eriksen R L, Bozhevolnyi S I 2013 Nano Lett. 13 829

    [26]

    Saeidi C, van der Weide D 2014 Appl. Phys. Lett. 105 053107

    [27]

    Kang M, Feng T H, Wang H T, Li J S 2012 Opt. Express 20 15882

  • [1]

    Guo F, Du H L, Qu S B, Xia S, Xu Z, Zhao J F, Zhang H M 2015 Acta Phys. Sin. 64 077801 (in Chinese) [郭飞, 杜红亮, 屈绍波, 夏颂, 徐卓, 赵建峰, 张红梅 2015 物理学报 64 077801]

    [2]

    Liu G C, Li C, Fang G Y 2015 Chin. Phys. B 24 14101

    [3]

    Wu S, Huang X J, Xiao B X, Jin Y, Yang H L 2015 Chin. Phys. B 23 127805

    [4]

    Cai T, Wang G M, Liang J G, Zhuang Y Q 2014 Chin. Phys. Lett. 31 084101

    [5]

    Cai T, Wang G M, Zhang X F, Wang Y W, Zong B F, Xu H X 2015 IEEE Trans. Antennas Propag. 63 2306

    [6]

    Cai T, Wang G M, Zhang X F, Shi J P 2015 IEEE Antennas Wirel. Propag. Lett. 14 1072

    [7]

    Francesco M, Andrea A 2014 Chin. Phys. B 23 047809

    [8]

    Ni X, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M 2012 Science 335 427

    [9]

    Farmahini-Farahani M, Mosallaei H 2013 Opt. Lett. 38 462

    [10]

    Li X, Xiao S Y, Cai B G, He Q, Cui T J, Zhou L 2012 Opt. Lett. 37 4940

    [11]

    Wan X, Li Y B, Cai B G, Cui T J 2014 Appl. Phys. Lett. 105 151604

    [12]

    Luo J, Yu H L, Song M W, Zhang Z J 2014 Opt. Lett. 39 2229

    [13]

    Yu N F, Genevet P, Kats A M, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [14]

    Pu M B, Chen P, Wang C T, Wang Y Q, Zhao Z Y, Hu C G, Huang C, Luo X G 2013 AIP Advances 3 052136

    [15]

    Wei Z Y, Cao Y, Su X P, Gong Z J, Long Y, Li H Q 2013 Opt. Express 21 010739

    [16]

    Wang J F, Qu S B, Ma H, Xu Z, Zhang A X, Zhou H, Chen H Y, Li Y F 2012 Appl. Phys. Lett. 101 201104

    [17]

    Wang W S, Zhang L W, Zhang Y W, Fang K 2013 Acta Phys. Sin. 2013 62 024203 (in Chinese) [王五松, 张利伟, 张冶文, 方恺 2013 物理学报 62 024203]

    [18]

    Wang J F, Qu S B, Ma H, Xu Z, Zhang A X, Zhou H, Chen H Y, Li Y F 2012 Appl. Phys. Lett. 101 201104

    [19]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Wu X, Xu Z, Zhang A X 2015 Acta Phys. Sin. 64 094101 (in Chinese) [李永峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学 2015 物理学报 64 094101]

    [20]

    Huang L L, Chen X Z, Bai B F, Tan Q F, Jin G F, Zentgraf T, Zhang S 2013 Light: Science Applications 2 e70

    [21]

    Huang L L, Chen X Z, Mhlenbernd H, Li G X, Bai B F, Tan Q F, Jin G F, Zentgraf T, Zhang S 2012 Nano Lett. 12 5750

    [22]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Pang Y Q, Xu Z, Zhang A X 2015 J. Appl. Phys. 117 044501

    [23]

    Wang J F, Qu S B, Xu Z, Ma H, Wang X H, Huang D Q, Li Y F 2012 Photon. Nanostruct. Fundam. Applic. 10 540

    [24]

    Aieta F, Genevent P, Kats M A, Yu N F, Blanchard R, Gaburro Z, Capasso F 2012 Nano Lett. 12 4932

    [25]

    Pors A, Nielsen M G, Eriksen R L, Bozhevolnyi S I 2013 Nano Lett. 13 829

    [26]

    Saeidi C, van der Weide D 2014 Appl. Phys. Lett. 105 053107

    [27]

    Kang M, Feng T H, Wang H T, Li J S 2012 Opt. Express 20 15882

  • [1] 冯奎胜, 李娜, 李桐. 有源器件混合集成的超薄超宽带可调雷达吸波体. 物理学报, 2022, 71(3): 034101. doi: 10.7498/aps.71.20211254
    [2] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [3] 高喜, 唐李光. 基于双层超表面的宽带、高效透射型轨道角动量发生器. 物理学报, 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [4] 冯奎胜, 李娜, 李桐. 有源器件混合集成的超薄超宽带可调雷达吸波体. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211254
    [5] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211596
    [6] 刘康, 何韬, 刘涛, 李国卿, 田博, 王佳怡, 杨树明. 激光照明条件对超振荡平面透镜聚焦性能的影响. 物理学报, 2020, 69(18): 184215. doi: 10.7498/aps.69.20200577
    [7] 周璐, 赵国忠, 李晓楠. 基于双开口谐振环超表面的宽带太赫兹涡旋光束产生. 物理学报, 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [8] 高强, 王晓华, 王秉中. 基于宽带立体超透镜的远场超分辨率成像. 物理学报, 2018, 67(9): 094101. doi: 10.7498/aps.67.20172608
    [9] 宁仁霞, 鲍婕, 焦铮. 基于石墨烯超表面的宽带电磁诱导透明研究. 物理学报, 2017, 66(10): 100202. doi: 10.7498/aps.66.100202
    [10] 李唐景, 梁建刚, 李海鹏, 牛雪彬, 刘亚峤. 基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计. 物理学报, 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [11] 韩江枫, 曹祥玉, 高军, 李思佳, 张晨. 一种基于超材料的宽带、反射型90极化旋转体设计. 物理学报, 2016, 65(4): 044201. doi: 10.7498/aps.65.044201
    [12] 李唐景, 梁建刚, 李海鹏. 基于单层反射超表面的宽带圆极化高增益天线设计. 物理学报, 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [13] 蒋忠君, 刘建军. 超振荡及其远场聚焦成像研究进展. 物理学报, 2016, 65(23): 234203. doi: 10.7498/aps.65.234203
    [14] 郭飞, 杜红亮, 屈绍波, 夏颂, 徐卓, 赵建峰, 张红梅. 基于磁/电介质混合型基体的宽带超材料吸波体的设计与制备. 物理学报, 2015, 64(7): 077801. doi: 10.7498/aps.64.077801
    [15] 李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星. 阿基米德螺旋微纳结构中的表面等离激元聚焦. 物理学报, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [16] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 二维宽带相位梯度超表面设计及实验验证. 物理学报, 2015, 64(9): 094101. doi: 10.7498/aps.64.094101
    [17] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩. 基于电磁谐振分离的宽带低雷达截面超材料吸波体. 物理学报, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [18] 王莹, 程用志, 聂彦, 龚荣洲. 基于集总元件的低频宽带超材料吸波体设计与实验研究. 物理学报, 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [19] 李思佳, 曹祥玉, 高军, 郑秋容, 赵一, 杨群. 低雷达散射截面的超薄宽带完美吸波屏设计研究. 物理学报, 2013, 62(19): 194101. doi: 10.7498/aps.62.194101
    [20] 张庆斌, 兰鹏飞, 洪伟毅, 廖青, 杨振宇, 陆培祥. 控制场对宽带超连续谱产生的影响. 物理学报, 2009, 58(7): 4908-4913. doi: 10.7498/aps.58.4908
计量
  • 文章访问数:  7866
  • PDF下载量:  557
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-17
  • 修回日期:  2015-10-25
  • 刊出日期:  2016-01-20

/

返回文章
返回