搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

熔石英中过氧缺陷及中性氧空位缺陷的几何结构、电子结构和吸收光谱的准粒子计算

苏锐 张红 姜胜利 陈军 韩伟

引用本文:
Citation:

熔石英中过氧缺陷及中性氧空位缺陷的几何结构、电子结构和吸收光谱的准粒子计算

苏锐, 张红, 姜胜利, 陈军, 韩伟

Quasi-particle calculations on electronic and optical properties of the peroxy linkage and neutral oxygen vacancy defects in amorphous silica

Su Rui, Zhang Hong, Jiang Sheng-Li, Chen Jun, Han Wei
PDF
导出引用
  • 本文使用密度泛函理论研究了熔石英中peroxy linkage(POL)缺陷和中性氧空位(NOV)缺陷的几何结构, 电子结构以及光学性质. 采用自洽的准粒子GW计算结合求解Bathe-Salpeter方程的多体理论, 研究了缺陷引起的电子结构和光学吸收谱的变化. 首先研究了无缺陷非晶结构的电子结构与吸收谱, 得到的结果与实验值非常接近. 对POL的计算表明, 其在基态下的局部结构与过氧化氢分子类似. 采用多体理论计算得到的吸收谱表明其最低吸收峰位于6.3 eV处. 这一结果不支持实验认为的位于3.8 eV处的吸收峰是由POL缺陷导致的说法. 对于NOV缺陷, 计算表明其基态的SI-SI键长为2.51 而三重态下的值则为3.56 . 相应的GW+BSE计算表明中性氧空位缺陷导致了位于7.4 eV处的吸收峰, 与实验测量结果一致.
    Recently, fused silica has been used to prepare the optical windows in the inertial confinement fusion (ICF) equipment. Challenge of application of fused silica is due to the defect-related optical absorption which is considered as the main mechanism of laser-induced damage process. However, due to structural complexity, calculation of the defect-related absorption from the first principles is only limited to small clusters, and a full treatment using the state of art GW and Bathe-Salpeter equation (BSE) method is still lacking.In this work, density functional theory calculations are performed to study the defect structure of the peroxy linkage (POL) and the neutral oxygen vacancy (NOV) defects in amorphous silica. Firstly, well relaxed structure is generated by using a combination of the bond switching Monte Carlo technique and the DFT-based structure optimization. Secondly, the defect structures are generated and studied in both the ground singlet (S0) and the first excited triplet (T1) states. Finally, the electronic and optical properties of the considered structures are studied by applying the self-consistent quasi-particle GW (sc-QPGW) and the BSE methods in Tamm-Dankoff approximation.In the ground state S0, the POL defect is found to be stable and shares a similar local structure to the H2O2 molecule. However, in T1 state, the POL defect breaks into a pair of E' center ( - Si ) and peroxy oxygen radial ( O-O-Si-). For the NOV defect, the optimized Si-Si bond length in the ground state is 2.51 with a variation of 0.1 due to the structural disorder. In comparison to the ground state, the optimized Si-Si bond length in T1 state increases to 3.56 .The scGW/BSE calculation on the defect free structure predicts a quasi particle band gap of 10.1 eV and an optical band gap of 8.0 eV, which are consistent well with the available experimental results. For the POL defect, the scGW/BSE calculation reveals a weak exciton peak at 6.3 eV. Below 6.3 eV, no new exciton peak is found, implying that the experimentally suggested 3.8 eV peak could not be attributed to the POL defect. Calculations of the NOV defect gives a strong and highly polarized optical absorption peak at 7.4 eV which is close to the previous experimental result at 7.6 eV. The structural relaxation induced by NOV also contributes to another absorption peak at 7.8 eV.
      通信作者: 陈军, jun_chen@iapcm.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 10744048, 11202032)和国防基础科学研究计划 (批准号: B1520132013) 资助的课题.
      Corresponding author: Chen Jun, jun_chen@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10744048, 11202032) and the National Defense Basic Scientific Research program of China (Grant No. B1520132013).
    [1]

    Kajihara K, Skuja L, Hirano M, Hosono H 2004 Phys. Rev. Lett. 92 15504

    [2]

    Kajihara K, Hirano M, Skuja L, Hosono H 2008 Phys. Rev. B 78 94201

    [3]

    Li L, Xiang X, Yuan X D, He S B, Jiang X D, Zheng W G, Zu X T 2013 Chin. Phys. B 22 054207

    [4]

    Zhang Q L, Zhang J, Qiu K S, Zhang D X, Feng B H, Zhang J Y 2012 Chin. Phys. B 21 054216

    [5]

    Sakurai Y 2000 J. Non-Cryst. Solids 276 159

    [6]

    Fournier J, Nauport J, Grua P, Fargin E, Jubera V, Talaga D, Jouannigot S 2010 Opt. Express 18 21557

    [7]

    Skuja L, Gttler B, Schiel D, Silin A R 1998 Phys. Rev. B 58 14296

    [8]

    Natoli J Y, Bertussi B, Commandr M 2005 Opt. Lett. 30 1315

    [9]

    Fournier J, Grua P, Nauport J, 2013 Opt. Mater. Express 3 1

    [10]

    Duchateau G, Feit M D, Demos S G 2012 J. Appl. Phys. 111 093106

    [11]

    Nishikawa H, Tohmon R, Ohki Y, Nagasawa K, Hama Y 1989 J. Appl. Phys. 65 12

    [12]

    Nishikawa H, Shiroyama T, Nakamura R, Ohki Y, Nagasawa K, Hama Y 1992 Phys. Rev. B 45 586

    [13]

    Griscom D L, Friebele E J 1981 Phys. Rev. B 24 4896

    [14]

    Hosono H, Kajihara K, Suzuki T, Ikuta Y, Skuja L, Hirano M 2002 Solid State Commun. 122 117

    [15]

    Edwards A H, Fowler W B 1982 Phys. Rev. B 26 6649

    [16]

    Pacchioni G, Ieran G 1997 Phys. Rev. Lett. 79 753

    [17]

    Pacchioni G, Ierańo G 1998 Phys. Rev. B 57 818

    [18]

    Sulimov V B, Sushko P V, Edwards A H, Shluger A L, Stoneham A M 2002 Phys. Rev. B 66 24108

    [19]

    Tamura T, Lu G H, Yamamoto R, Kohyama M 2004 Phys. Rev. B 69 195204

    [20]

    Uchino T, Takahashi M, Yoko T 2000 Phys. Rev. B 62 2983

    [21]

    Sulimov V, Casassa S, Pisani C, Garapon J, Poumellec B 2000 Model. Simul. Mater. Sci. Eng. 8 763

    [22]

    Mukhopadhyay S, Sushko P V, Stoneham A M, Shluger A L 2004 Phys. Rev. B 70 195203

    [23]

    Mukhopadhyay S, Sushko P V, Stoneham A M, Shluger A L 2005 Phys. Rev. B 71 235204

    [24]

    Jiang S, Lu T, Long Y, Chen J 2012 J. Appl. Phys. 111 043516

    [25]

    Kresse G, Marsman M, Hintzsche L E, Flage-Larsen E 2012 Phys. Rev. B 85 045205

    [26]

    Chiodo L, Garca-Lastra J M, Iacomino A, Ossicini S, Zhao J, Petek H, Rubio A 2010 Phys. Rev. B 82 045207

    [27]

    Anderson N L, Vedula R P, Schultz P A, Van Ginhoven R M, Strachan A 2011 Phys. Rev. Lett. 106 206402

    [28]

    Su R, Xiang M, Chen J, Jiang S, Wei H 2014 J. Appl. Phys. 115 193508

    [29]

    Sadigh B, Erhart P, berg D, Trave A, Schwegler E, Bude J 2011 Phys. Rev. Lett. 106 027401

    [30]

    Wooten F, Winer K, Weaire D 1985 Phys. Rev. Lett. 54 1392

    [31]

    Von Alfthan S, Kuronen A, Kaski K 2003 Phys. Rev. B 68 073203

    [32]

    Mozzi B, Warren R 1969 J. Appl. Crystallogr. 2 164

    [33]

    Kresse J, Hafner G 1993 Phys. Rev. B 47 558

    [34]

    Kresse J, Hafner G 1994 Phys. Rev. B 49 14251

    [35]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [36]

    Sakurai K, Nagasawa Y 2000 J. Non-Cryst. Solids 277 82

    [37]

    Kresse D, Joubert G 1999 Phys. Rev. B 59 1758

    [38]

    Bakos T, Rashkeev S, Pantelides S 2004 Phys. Rev. B 70

    [39]

    Donadio D, Bernasconi M, Boero M 2001 Phys. Rev. Lett. 87 195504

    [40]

    Van Ginhoven R M, Jnsson H, Peterson K A, Dupuis M, Corrales L R 2003 J. Chem. Phys. 118 6582

    [41]

    Faleev S V, van Schilfgaarde M, Kotani T 2004 Phys. Rev. Lett. 93 126406

    [42]

    Schmidt W G, Glutsch S, Hahn P H, Bechstedt F 2003 Phys. Rev. B 67 085307

    [43]

    Saito A J, Ikushima K 2000 Phys. Rev. B 62 8584

    [44]

    Philipp H R 1966 Solid State Commun 4 73

    [45]

    Bak K L, Gauss J, Jurgensen P, Olsen J, Helgaker T, Stanton J F 2001 J. Chem. Phys. 114 6548

    [46]

    O'Reilly J, Robertson E 1983 Phys. Rev. B 27 3780

  • [1]

    Kajihara K, Skuja L, Hirano M, Hosono H 2004 Phys. Rev. Lett. 92 15504

    [2]

    Kajihara K, Hirano M, Skuja L, Hosono H 2008 Phys. Rev. B 78 94201

    [3]

    Li L, Xiang X, Yuan X D, He S B, Jiang X D, Zheng W G, Zu X T 2013 Chin. Phys. B 22 054207

    [4]

    Zhang Q L, Zhang J, Qiu K S, Zhang D X, Feng B H, Zhang J Y 2012 Chin. Phys. B 21 054216

    [5]

    Sakurai Y 2000 J. Non-Cryst. Solids 276 159

    [6]

    Fournier J, Nauport J, Grua P, Fargin E, Jubera V, Talaga D, Jouannigot S 2010 Opt. Express 18 21557

    [7]

    Skuja L, Gttler B, Schiel D, Silin A R 1998 Phys. Rev. B 58 14296

    [8]

    Natoli J Y, Bertussi B, Commandr M 2005 Opt. Lett. 30 1315

    [9]

    Fournier J, Grua P, Nauport J, 2013 Opt. Mater. Express 3 1

    [10]

    Duchateau G, Feit M D, Demos S G 2012 J. Appl. Phys. 111 093106

    [11]

    Nishikawa H, Tohmon R, Ohki Y, Nagasawa K, Hama Y 1989 J. Appl. Phys. 65 12

    [12]

    Nishikawa H, Shiroyama T, Nakamura R, Ohki Y, Nagasawa K, Hama Y 1992 Phys. Rev. B 45 586

    [13]

    Griscom D L, Friebele E J 1981 Phys. Rev. B 24 4896

    [14]

    Hosono H, Kajihara K, Suzuki T, Ikuta Y, Skuja L, Hirano M 2002 Solid State Commun. 122 117

    [15]

    Edwards A H, Fowler W B 1982 Phys. Rev. B 26 6649

    [16]

    Pacchioni G, Ieran G 1997 Phys. Rev. Lett. 79 753

    [17]

    Pacchioni G, Ierańo G 1998 Phys. Rev. B 57 818

    [18]

    Sulimov V B, Sushko P V, Edwards A H, Shluger A L, Stoneham A M 2002 Phys. Rev. B 66 24108

    [19]

    Tamura T, Lu G H, Yamamoto R, Kohyama M 2004 Phys. Rev. B 69 195204

    [20]

    Uchino T, Takahashi M, Yoko T 2000 Phys. Rev. B 62 2983

    [21]

    Sulimov V, Casassa S, Pisani C, Garapon J, Poumellec B 2000 Model. Simul. Mater. Sci. Eng. 8 763

    [22]

    Mukhopadhyay S, Sushko P V, Stoneham A M, Shluger A L 2004 Phys. Rev. B 70 195203

    [23]

    Mukhopadhyay S, Sushko P V, Stoneham A M, Shluger A L 2005 Phys. Rev. B 71 235204

    [24]

    Jiang S, Lu T, Long Y, Chen J 2012 J. Appl. Phys. 111 043516

    [25]

    Kresse G, Marsman M, Hintzsche L E, Flage-Larsen E 2012 Phys. Rev. B 85 045205

    [26]

    Chiodo L, Garca-Lastra J M, Iacomino A, Ossicini S, Zhao J, Petek H, Rubio A 2010 Phys. Rev. B 82 045207

    [27]

    Anderson N L, Vedula R P, Schultz P A, Van Ginhoven R M, Strachan A 2011 Phys. Rev. Lett. 106 206402

    [28]

    Su R, Xiang M, Chen J, Jiang S, Wei H 2014 J. Appl. Phys. 115 193508

    [29]

    Sadigh B, Erhart P, berg D, Trave A, Schwegler E, Bude J 2011 Phys. Rev. Lett. 106 027401

    [30]

    Wooten F, Winer K, Weaire D 1985 Phys. Rev. Lett. 54 1392

    [31]

    Von Alfthan S, Kuronen A, Kaski K 2003 Phys. Rev. B 68 073203

    [32]

    Mozzi B, Warren R 1969 J. Appl. Crystallogr. 2 164

    [33]

    Kresse J, Hafner G 1993 Phys. Rev. B 47 558

    [34]

    Kresse J, Hafner G 1994 Phys. Rev. B 49 14251

    [35]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [36]

    Sakurai K, Nagasawa Y 2000 J. Non-Cryst. Solids 277 82

    [37]

    Kresse D, Joubert G 1999 Phys. Rev. B 59 1758

    [38]

    Bakos T, Rashkeev S, Pantelides S 2004 Phys. Rev. B 70

    [39]

    Donadio D, Bernasconi M, Boero M 2001 Phys. Rev. Lett. 87 195504

    [40]

    Van Ginhoven R M, Jnsson H, Peterson K A, Dupuis M, Corrales L R 2003 J. Chem. Phys. 118 6582

    [41]

    Faleev S V, van Schilfgaarde M, Kotani T 2004 Phys. Rev. Lett. 93 126406

    [42]

    Schmidt W G, Glutsch S, Hahn P H, Bechstedt F 2003 Phys. Rev. B 67 085307

    [43]

    Saito A J, Ikushima K 2000 Phys. Rev. B 62 8584

    [44]

    Philipp H R 1966 Solid State Commun 4 73

    [45]

    Bak K L, Gauss J, Jurgensen P, Olsen J, Helgaker T, Stanton J F 2001 J. Chem. Phys. 114 6548

    [46]

    O'Reilly J, Robertson E 1983 Phys. Rev. B 27 3780

  • [1] 张学阳, 陈军, 胡望宇. 激光辐照下熔石英表面损伤的原子模拟. 物理学报, 2023, 72(15): 156201. doi: 10.7498/aps.72.20230606
    [2] 张丽娟, 张传超, 陈静, 白阳, 蒋一岚, 蒋晓龙, 王海军, 栾晓雨, 袁晓东, 廖威. 激光诱导熔石英表面损伤修复中的气泡形成和控制研究. 物理学报, 2018, 67(1): 016103. doi: 10.7498/aps.67.20171839
    [3] 沈超, 程湘爱, 田野, 许中杰, 江天. 1064nm纳秒激光对熔石英元件后表面击穿的实验与数值研究. 物理学报, 2016, 65(15): 155201. doi: 10.7498/aps.65.155201
    [4] 白阳, 张丽娟, 廖威, 周海, 张传超, 陈静, 叶亚云, 蒋一岚, 王海军, 栾晓雨, 袁晓东, 郑万国. 熔石英损伤修复坑下游光场调制的数值模拟与实验研究. 物理学报, 2016, 65(2): 024205. doi: 10.7498/aps.65.024205
    [5] 蒋勇, 袁晓东, 王海军, 廖威, 刘春明, 向霞, 邱荣, 周强, 高翔, 杨永佳, 郑万国, 祖小涛, 苗心向. 退火对熔石英表面损伤修复点损伤增长的影响. 物理学报, 2016, 65(4): 044209. doi: 10.7498/aps.65.044209
    [6] 韩伟, 冯斌, 郑奎兴, 朱启华, 郑万国, 巩马理. 高功率激光装置熔石英紫外损伤增长研究. 物理学报, 2016, 65(24): 246102. doi: 10.7498/aps.65.246102
    [7] 唐士惠, 操秀霞, 何林, 祝文军. 空位缺陷和相变对冲击压缩下蓝宝石光学性质的影响. 物理学报, 2016, 65(14): 146201. doi: 10.7498/aps.65.146201
    [8] 蒋勇, 贺少勃, 袁晓东, 王海军, 廖威, 吕海兵, 刘春明, 向霞, 邱荣, 杨永佳, 郑万国, 祖小涛. CO2激光光栅式扫描修复熔石英表面缺陷的实验研究与数值模拟. 物理学报, 2014, 63(6): 068105. doi: 10.7498/aps.63.068105
    [9] 钟勉, 杨亮, 任玮, 向霞, 刘翔, 练友运, 徐世珍, 郭德成, 郑万国, 袁晓东. 高功率脉冲电子束辐照SiO2的光学和激光损伤性能. 物理学报, 2014, 63(24): 246103. doi: 10.7498/aps.63.246103
    [10] 石彦立, 韩伟, 卢铁城, 陈军. 含羟基结构熔石英光电性质的第一性原理研究. 物理学报, 2014, 63(8): 083101. doi: 10.7498/aps.63.083101
    [11] 刘春明, 杨亮, 晏中华, 蒋勇, 王海军, 廖威, 向霞, 贺少勃, 吕海兵, 袁晓东, 郑万国, 祖小涛. CO2激光局域辐照对熔石英损伤特性的影响. 物理学报, 2013, 62(9): 094701. doi: 10.7498/aps.62.094701
    [12] 章春来, 刘春明, 向霞, 戴威, 王治国, 李莉, 袁晓东, 贺少勃, 祖小涛. 裂纹或气泡对熔石英损伤修复坑场调制的近场模拟. 物理学报, 2012, 61(12): 124214. doi: 10.7498/aps.61.124214
    [13] 章春来, 王治国, 向霞, 刘春明, 李莉, 袁晓东, 贺少勃, 祖小涛. 熔石英后表面坑点型划痕对光场调制的近场模拟. 物理学报, 2012, 61(11): 114210. doi: 10.7498/aps.61.114210
    [14] 孙中华, 王红艳, 张志东, 张中月. 金纳米环结构的光学性质研究. 物理学报, 2011, 60(4): 047808. doi: 10.7498/aps.60.047808
    [15] 刘红婕, 周信达, 黄进, 王凤蕊, 蒋晓东, 黄竞, 吴卫东, 郑万国. 355 nm纳秒紫外激光辐照下熔石英前后表面损伤的对比研究. 物理学报, 2011, 60(6): 065202. doi: 10.7498/aps.60.065202
    [16] 李建华, 曾祥华, 季正华, 胡益培, 陈宝, 范玉佩. ZnS掺Ag与Zn空位缺陷的电子结构和光学性质. 物理学报, 2011, 60(5): 057101. doi: 10.7498/aps.60.057101
    [17] 王凤蕊, 黄进, 刘红婕, 周信达, 蒋晓东, 吴卫东, 郑万国. 激光诱导HF酸刻蚀后熔石英后表面划痕的损伤行为研究. 物理学报, 2010, 59(7): 5122-5127. doi: 10.7498/aps.59.5122
    [18] 刘红婕, 黄进, 王凤蕊, 周信达, 蒋晓东, 吴卫东. 熔石英表面热致应力对激光损伤行为影响的研究. 物理学报, 2010, 59(2): 1308-1313. doi: 10.7498/aps.59.1308
    [19] 汪 莎, 陈 军, 童立新, 高清松, 刘 崇, 唐 淳. 熔石英棒-光纤构成的新型复合相位共轭镜的实验和理论研究. 物理学报, 2008, 57(3): 1719-1724. doi: 10.7498/aps.57.1719
    [20] 刘廷禹, 张启仁, 庄松林. 含铅空位的PbWO4晶体光学性质及其偏振特性的研究. 物理学报, 2005, 54(8): 3780-3786. doi: 10.7498/aps.54.3780
计量
  • 文章访问数:  6080
  • PDF下载量:  258
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-25
  • 修回日期:  2015-10-26
  • 刊出日期:  2016-01-20

/

返回文章
返回