搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多层介质膜光栅的谱合成系统光束特性分析

吴真 钟哲强 杨磊 张彬

引用本文:
Citation:

基于多层介质膜光栅的谱合成系统光束特性分析

吴真, 钟哲强, 杨磊, 张彬

Analysis of characteristics of combined beam in spectral beam combining system based on multilayer dielectric grating

Wu Zhen, Zhong Zhe-Qiang, Yang Lei, Zhang Bin
PDF
导出引用
  • 针对多层介质膜光栅在光束谱合成系统中的应用, 利用光线追迹方法, 建立了基于多层介质膜光栅的谱合成系统光传输模型. 多层介质膜光栅引入的相位调制包括浮雕表面上光程差与浮雕结构光程差两部分, 且受到光栅槽深、占空比和光束入射角等因素的影响. 利用衍射积分方法和光束非相干叠加原理, 计算模拟了基于多层介质膜光栅的谱合成系统的合成光束光强分布. 在此基础上, 利用强度二阶矩方法分析了合成光束的光束质量, 并讨论了多层介质膜光栅的槽深、占空比和制作误差等因素对合成光束特性的影响. 结果表明: 改变多层介质膜光栅的槽深和占空比以及中心光束入射角会影响合成光束能量, 但不会影响合成光束的光束质量, 合成光束的光束质量始终保持与单个子光束的光束质量相当; 多层介质膜光栅的制作误差对合成光束的光束质量和能量均存在明显影响.
    Aiming at the application of multilayer dielectric gratings (MDGs) in spectral beam combining (SBC) systems, a theoretical model of rectangular MDGs is built up and a beam propagation model of SBC systems based on the rectangular MDGs is further developed. The phase modulation introduced by the rectangular MDG is composed of the optical path difference on the top surface of reliefs and that of the relief structure itself, and is affected by the MDG parameters such as the grating groove depth, the grating duty cycle, the incidence angle of the central beam, etc. By the diffraction integral method and the principle of incoherent superposition, the intensity distribution of the combined beam of the SBC system based on the rectangular MDGs is numerically calculated and analyzed. Additionally, the beam quality of the combined beam is also obtained by the intensity second-order moments method, and the effects of the MDG parameters such as the groove depth, the duty cycle, the incidence angle of the central beam, and the fabrication errors of the MDG on the characteristics of the combined beam of the SBC systems are simulated and discussed in detail. The simulation results show that the beam quality of the combined beam after passing through the SBC systems is significantly better than that of the laser array. Since the quality of the combined beam is almost the same as that of an individual laser beam, for a SBC system without fabrication error, changing the groove depth, the duty cycle of the rectangular MDG or the incidence angle of the central beam does not affect the beam quality while it has obvious influence on the energy of the combined beam. This is mainly because the diffraction efficiency of the rectangular MDG depends on both the parameters of the MDG and the incidence angle of the central beam. However, fabrication error of MDG is unavoidable, and the fabrication error has a significant effect on both the beam quality and the energy of the combined beam. Compared with the effect generated by the groove depth error on beam quality, the influence introduced by the duty cycle error is more obvious. It is worth mentioning that the theoretical model of the SBC system based on the rectangular MDG can be applied to some other high-power laser systems due to its advantages such as low absorption and high damage threshold.
      通信作者: 张彬, zhangbinff@sohu.com.
    • 基金项目: 中国工程物理研究院高能激光科学与技术实验室基金(批准号: 2014HEL03)资助的课题.
      Corresponding author: Zhang Bin, zhangbinff@sohu.com.
    • Funds: Project supported by the Key Laboratory of Science and Technology on High Energy Laser, CAEP Research Program (Grant No. 2014HEL03).
    [1]

    Drachenberg D R, Andrusyak O, Venus G, Smirnow V, Glebov L B 2014 Appl. Opt. 53 1242

    [2]

    Lu C A, Newell T C, Glebov L, Balakrishnan G 2015 Electron. Lett. 51 508

    [3]

    Bousselet P, Simonneau C, Bayart D, Salet P, Lucas-Leclin G, Roger G, Georges P, Auzanneau S, Michel N, Calligaro M, Parillaud O, Lecomte M, Krakowski M 2005 Optical Fiber Communication Conference Anaheim, California United States, 6 March, 2005 OThL2

    [4]

    Zhan S B, Zhao S H, Chu X C, Wu Z L, Shi L 2010 Opt. Laser. Technol. 42 308

    [5]

    Sheng B J, Tan J C, Zheng G W, He Y L 2011 High Power Laser and Particle Beams 23 593 (in Chinese) [沈本剑, 谭吉春, 郑光威, 何焰蓝 2011 强激光与粒子束 23 593]

    [6]

    Zhang Y, Zhang B, Zhu S J 2007 Acta Phys. Sin. 56 4590 (in Chinese) [张艳, 张彬, 祝颂军 2007 物理学报 56 4590]

    [7]

    Pan L L, Zhang B, Yin S Q, Zhang Y 2009 Acta Phys. Sin. 58 8289 (in Chinese) [潘雷雷, 张彬, 阴素琴, 张艳 2009 物理学报 58 8289]

    [8]

    Boyd R D, Britten J A, Decker D E, Shore B W, Stuart B C, Perry M D, Li L F 1995 Appl. Opt. 34 1697

    [9]

    Kemme S A, Scrymgeour D A, Peters D W 2012 SPIE, Laser Technology for Defense and Security Baltimore, Maryland, April 23, 2012 p83810Q

    [10]

    Meng H C, Wu D Y, Tan H, Li J M, Yu J H, Gao S X 2015 Chinese J. Lasers 42 0302003 (in Chinese) [孟慧成, 武德勇, 谭昊, 李建民, 余俊宏, 高松信 2015 中国激光 42 0302003]

    [11]

    Neauport J, Lavastre E, Raz G, Dupuy G, Bonod N, Balas M, Villele G, Flamand J, Kaladgew S, Desserouer F 2007 Opt. Express 15 12508

    [12]

    Wang J P, Jin Y X, Shao J D, Fan Z X 2010 Opt. Lett. 35 187

    [13]

    Guan H Y, Jin Y X, Liu S J, Kong F Y, Du Y, He K, Yi K, Shao J D 2014 Appl. Phys. B 114 557

    [14]

    Daneu V, Sanchez A, Fan T Y, Choi H K, Turner G W, Cook C C 2000 Opt. Lett. 25 405

    [15]

    Bochove E J 2001 Proc. SPIE 4270 95

    [16]

    Schnopper H W, Van Speybroeck L P, Delvaille J P, Epstein A, Kllne E, Bachrach R Z, Dijkstra J, Lantward L 1977 Appl. Opt. 16 1088

  • [1]

    Drachenberg D R, Andrusyak O, Venus G, Smirnow V, Glebov L B 2014 Appl. Opt. 53 1242

    [2]

    Lu C A, Newell T C, Glebov L, Balakrishnan G 2015 Electron. Lett. 51 508

    [3]

    Bousselet P, Simonneau C, Bayart D, Salet P, Lucas-Leclin G, Roger G, Georges P, Auzanneau S, Michel N, Calligaro M, Parillaud O, Lecomte M, Krakowski M 2005 Optical Fiber Communication Conference Anaheim, California United States, 6 March, 2005 OThL2

    [4]

    Zhan S B, Zhao S H, Chu X C, Wu Z L, Shi L 2010 Opt. Laser. Technol. 42 308

    [5]

    Sheng B J, Tan J C, Zheng G W, He Y L 2011 High Power Laser and Particle Beams 23 593 (in Chinese) [沈本剑, 谭吉春, 郑光威, 何焰蓝 2011 强激光与粒子束 23 593]

    [6]

    Zhang Y, Zhang B, Zhu S J 2007 Acta Phys. Sin. 56 4590 (in Chinese) [张艳, 张彬, 祝颂军 2007 物理学报 56 4590]

    [7]

    Pan L L, Zhang B, Yin S Q, Zhang Y 2009 Acta Phys. Sin. 58 8289 (in Chinese) [潘雷雷, 张彬, 阴素琴, 张艳 2009 物理学报 58 8289]

    [8]

    Boyd R D, Britten J A, Decker D E, Shore B W, Stuart B C, Perry M D, Li L F 1995 Appl. Opt. 34 1697

    [9]

    Kemme S A, Scrymgeour D A, Peters D W 2012 SPIE, Laser Technology for Defense and Security Baltimore, Maryland, April 23, 2012 p83810Q

    [10]

    Meng H C, Wu D Y, Tan H, Li J M, Yu J H, Gao S X 2015 Chinese J. Lasers 42 0302003 (in Chinese) [孟慧成, 武德勇, 谭昊, 李建民, 余俊宏, 高松信 2015 中国激光 42 0302003]

    [11]

    Neauport J, Lavastre E, Raz G, Dupuy G, Bonod N, Balas M, Villele G, Flamand J, Kaladgew S, Desserouer F 2007 Opt. Express 15 12508

    [12]

    Wang J P, Jin Y X, Shao J D, Fan Z X 2010 Opt. Lett. 35 187

    [13]

    Guan H Y, Jin Y X, Liu S J, Kong F Y, Du Y, He K, Yi K, Shao J D 2014 Appl. Phys. B 114 557

    [14]

    Daneu V, Sanchez A, Fan T Y, Choi H K, Turner G W, Cook C C 2000 Opt. Lett. 25 405

    [15]

    Bochove E J 2001 Proc. SPIE 4270 95

    [16]

    Schnopper H W, Van Speybroeck L P, Delvaille J P, Epstein A, Kllne E, Bachrach R Z, Dijkstra J, Lantward L 1977 Appl. Opt. 16 1088

  • [1] 何婷, 田博宇, 邱蝶, 张彬. 基于直角锥面变形镜的薄管激光光束质量提升新方法. 物理学报, 2021, 70(17): 179501. doi: 10.7498/aps.70.20210603
    [2] 黄梓樾, 邓宇, 季小玲. 球差对高功率激光上行大气传输光束质量的影响. 物理学报, 2021, 70(23): 234202. doi: 10.7498/aps.70.20211226
    [3] 张志伦, 张芳芳, 林贤峰, 王世杰, 曹驰, 邢颍滨, 廖雷, 李进延. 国产部分掺杂光纤实现3 kW全光纤激光振荡输出. 物理学报, 2020, 69(23): 234205. doi: 10.7498/aps.69.20200620
    [4] 刘景良, 陈薪羽, 王睿明, 吴春婷, 金光勇. 基于中红外光参量振荡器光束质量优化的90°像旋转四镜非平面环形谐振腔型设计与分析. 物理学报, 2019, 68(17): 174201. doi: 10.7498/aps.68.20182001
    [5] 周泰斗, 梁小宝, 李超, 黄志华, 封建胜, 赵磊, 王建军, 景峰. 基于透射型体布拉格光栅的两通道2.5 kW光谱组束输出. 物理学报, 2017, 66(8): 084204. doi: 10.7498/aps.66.084204
    [6] 姜曼, 马鹏飞, 周朴, 王小林. 基于多层电介质光栅光谱合成的光束质量. 物理学报, 2016, 65(10): 104203. doi: 10.7498/aps.65.104203
    [7] 郭建增, 刘铁根, 牛志峰, 任晓明. 不同振荡放大比MOPA型化学激光器的数值模拟. 物理学报, 2013, 62(7): 074203. doi: 10.7498/aps.62.074203
    [8] 周小为, 刘颖, 徐向东, 邱克强, 刘正坤, 洪义麟, 付绍军. 大口径多层介质膜光栅衍射效率测量及其在制作工艺中的应用. 物理学报, 2012, 61(17): 174203. doi: 10.7498/aps.61.174203
    [9] 刘飞, 季小玲. 双曲余弦高斯列阵光束在湍流大气中的光束传输因子. 物理学报, 2011, 60(1): 014216. doi: 10.7498/aps.60.014216
    [10] 周丽丹, 粟敬钦, 李平, 王文义, 刘兰琴, 张颖, 张小民. 高功率固体激光装置光学元件"缺陷"分布与光束近场质量的定量关系研究. 物理学报, 2011, 60(2): 024202. doi: 10.7498/aps.60.024202
    [11] 陶汝茂, 司磊, 马阎星, 邹永超, 周朴. 高能光纤激光经准直系统后的光束质量研究. 物理学报, 2011, 60(10): 104208. doi: 10.7498/aps.60.104208
    [12] 王文鹏, 许周速, 徐军, 陈钢. 封离式He-N2-CO2激光器横模特性的测量与分析. 物理学报, 2009, 58(8): 5423-5428. doi: 10.7498/aps.58.5423
    [13] 肖玲, 程小劲, 徐剑秋. 分数自成像平面波导的光束组束. 物理学报, 2009, 58(6): 3870-3876. doi: 10.7498/aps.58.3870
    [14] 潘雷雷, 张彬, 阴素芹, 张艳. 掺Yb光纤激光器阵列谱合成系统的光束传输模型及光束特性分析. 物理学报, 2009, 58(12): 8289-8296. doi: 10.7498/aps.58.8289
    [15] 孔伟金, 云茂金, 孙 欣, 刘均海, 范正修, 邵建达. 基于严格耦合波理论的多层介质膜光栅衍射特性分析. 物理学报, 2008, 57(8): 4904-4910. doi: 10.7498/aps.57.4904
    [16] 王 宁, 陆雨田, 李晓莉, 焦志勇. InnoSlab混合腔输出光束质量的理论研究. 物理学报, 2008, 57(9): 5632-5638. doi: 10.7498/aps.57.5632
    [17] 张 艳, 张 彬, 祝颂军. 谱合成光束特性的模拟分析. 物理学报, 2007, 56(8): 4590-4595. doi: 10.7498/aps.56.4590
    [18] 刘世杰, 沈 健, 沈自才, 孔伟金, 魏朝阳, 晋云霞, 邵建达, 范正修. 多层介质膜脉冲压缩光栅近场光学特性分析. 物理学报, 2006, 55(9): 4588-4594. doi: 10.7498/aps.55.4588
    [19] 王屹山, 程光华, 刘青, 孙传东, 赵卫, 陈国夫. 可用于超精细加工的高重复率、高光束质量飞秒再生放大脉冲的产生研究. 物理学报, 2004, 53(1): 87-92. doi: 10.7498/aps.53.87
    [20] 王石语, 过 振, 傅君眉, 蔡德芳, 文建国, 唐映德. 抽运光分布对二极管抽运激光器振荡光光束质量的影响. 物理学报, 2004, 53(9): 2995-3003. doi: 10.7498/aps.53.2995
计量
  • 文章访问数:  4891
  • PDF下载量:  298
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-11
  • 修回日期:  2015-11-18
  • 刊出日期:  2016-03-05

/

返回文章
返回