搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种以压力一维均匀分布为特征的长条形对顶压砧

唐菲 陈丽英 刘秀茹 王君龙 张林基 洪时明

引用本文:
Citation:

一种以压力一维均匀分布为特征的长条形对顶压砧

唐菲, 陈丽英, 刘秀茹, 王君龙, 张林基, 洪时明

A strip anvil apparatus with linear uniform pressure distribution

Tang Fei, Chen Li-Ying, Liu Xiu-Ru, Wang Jun-Long, Zhang Lin-Ji, Hong Shi-Ming
PDF
导出引用
  • 针对圆形端面平面对顶压砧装置中压力梯度大的问题, 本文设计了一种长条形端面的平面对顶压砧, 相应的封垫也改为长条形. 原理分析表明: 这种压砧可在沿长条形中心线的狭长区域内产生均匀分布的高压力. 本文采用长20 mm宽5 mm长条形端面的硬质合金压砧配合叶腊石封垫进行压力标定, 实验结果显示: 这种装置可产生10 GPa以上的高压, 在长条形中心线上至少12 mm长度范围内的不同位置上产生的压力基本一致, 在2.55 GPa压力时测量偏差小于2.0%, 在7.7 GPa时测量偏差小于3.6%. 这种特点很有利于对细长样品进行精确的高压物性测量.
    Bridgman anvil is a useful and effective tool in high-pressure research. However, in this apparatus, the pressure distribution is essentially centrosymmetric. Thus, considerable pressure gradients exist in the gasket and in the sample chamber respectively, and the uniform pressure area is limited. To improve the pressure uniformity in flat face supported anvils, we design a strip face anvil instead of conventional round face anvil and adopt an assortive strip gasket. Principle analysis and a series of pressure calibration experiments are also presented in this paper.The construction of the strip anvil and relevant parts of the apparatus are shown in the diagrams and photos. The relationship between pressure and shearing stress in the strip gasket is investigated by using the model of M. Wakatsuki, which indicates that the pressure distribution should be uniform along the central line of the strip gasket.Pressure calibration experiments are conducted by using strip anvils made of tungsten carbide with a length of 20 mm and width of 5 mm and by using the assortive strip gasket of pyrophyllite. Pressures at different places of the central line are calibrated according to the known phase transitions of bismuth in the same loading process, and the samples are assembled with symmetrical, unsymmerical, and separated local collocations, respectively.Experimental results exhibit that the pressure reaches up to 10 GPa in the central line of the strip gasket, and the pressures are almost equal at least within the range of 12 mm on the central line. The bias errores of oil pressures measured at different places of the central line are all less than 2.0% at 2.55 GPa and 3.6% at 7.7 GPa, indicating only a small pressure gradient along the central line. The main reason for the measuring bias errors lies in the difficulty of the assembly technique. Specifically, the bismuth wire is difficult to adhere to the central line of the anvil during compression. Hence, further improvement of the process is expected in the future.In conclusion, the strip anvil is a unique high-pressure apparatus. The principle analysis and pressure calibration experiments confirm that the pressure is uniform in one-dimensional direction along the central line of the strip anvil. This feature is propitious to the accurate investigation of linear samples under high pressure.
      通信作者: 洪时明, smhong@home.swjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11004163)和中央高校基本科研业务费(批准号:2682014ZT31)资助的课题.
      Corresponding author: Hong Shi-Ming, smhong@home.swjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11004163) and the Fundamental Research Funds for the Central Universities, China (Grant No. 2682014ZT31).
    [1]

    Bridgman P W 1952 Proceeding of the American Academy of Arts and Sciences 81 165

    [2]

    Bridgman P W 1958 The Physics of High Pressure (4th Ed.) (New York: G. Bell and Sons) p1

    [3]

    Bassett W A, Takahashi T, Stook P W 1967 Rev. Sci. Instrum. 38 37

    [4]

    Mao H K, Bell P M 1978 Science 200 1145

    [5]

    Xu J A, Mao H K, Bell P M 1986 Science 232 1404

    [6]

    Mujica A, Rubio A, Munoz A, Needs R J 2003 Rev. Modern Phys. 75 864

    [7]

    Degtyareva O, Gregoryanz E, Somayazulu M, Dera P, Mao H K, Hemley R J 2005 Nature Mat. 4 152

    [8]

    Mao H K, Hemley R J 2007 PNAS 104 9114

    [9]

    Yang W, Huang X, Harder R, Clark J N, Robinson I K, Mao H K 2013 Nat. Commun. 4 1680

    [10]

    Liang H N, Ma C L, Du F, Cui Q L, Zou G T 2013 Chin. Phys. B 22 016103

    [11]

    Dave M, Vaidya R, Patel S G, Jani A R 2004 Bull. Mater. Sci. 27 213

    [12]

    Liu X R, Hong S M 2007 Appl. Phys. Lett. 90 251903

    [13]

    Liu X R, Hong S M, L S J, Shen R 2007 Appl. Phys. Lett. 91 081910

    [14]

    Huang D H, Liu X R, Su L, Hu Y, L S J, Liu H L, Hong S M 2007 Chin. Phys. Lett. 24 2441

    [15]

    Hamlin J J, Zocco D A, Sayles T A, Maple M B 2009 Phys. Rev. Lett. 102 177002

    [16]

    Chen L Y, Liu X R, Li M F, Zhang D D, Wang M Y, Hong S M 2013 Acta Phys. Sin. 62 079102 (in Chinese) [陈丽英, 刘秀茹, 黎明发, 张豆豆, 王明友, 洪时明 2013 物理学报 62 079102]

    [17]

    Wakatsuki M, Ichinose K, Aoki T 1972 Jpn. J. Appl. Phys. 11 578

    [18]

    Eremets M I 1996 High Pressure Experimental Methods (New York: Oxford University Press)

    [19]

    Piermarini G J, Block S, Barnett J D 1973 J. Appl. Phys. 44 5377

    [20]

    Besson J M, Pinceaux J P 1979 Rev. Sci. Instrum. 50 541

    [21]

    Chai M, Brown J M 1996 Geophys. Res. Lett. 23 3539

    [22]

    Kenichi T 2001 J. Appl. Phys. 89 662

    [23]

    Angel R J, Bujak M, Zhao J, Gatta G D, Jacobsen S D 2006 J. Appl. Cryst. 40 26

    [24]

    Mao H K, Badro J, Shu J, Hemley R J, Singh A K 2006 J. Phys.: Condens. Matt. 18 S963

    [25]

    Dewaele A, Loubeyre P 2007 High Press. Res. 27 419

    [26]

    Hong S M, Chen L Y, Liu X R, Wu X H, Su L 2005 Rev. Sci. Instrum. 76 053905

    [27]

    Chen L Y 2014 Ph. D. Dissertation (Chengdu: Southwest Jiaotong University) (in Chinese) [陈丽英 2014 博士学位论文 (成都: 西南交通大学)]

  • [1]

    Bridgman P W 1952 Proceeding of the American Academy of Arts and Sciences 81 165

    [2]

    Bridgman P W 1958 The Physics of High Pressure (4th Ed.) (New York: G. Bell and Sons) p1

    [3]

    Bassett W A, Takahashi T, Stook P W 1967 Rev. Sci. Instrum. 38 37

    [4]

    Mao H K, Bell P M 1978 Science 200 1145

    [5]

    Xu J A, Mao H K, Bell P M 1986 Science 232 1404

    [6]

    Mujica A, Rubio A, Munoz A, Needs R J 2003 Rev. Modern Phys. 75 864

    [7]

    Degtyareva O, Gregoryanz E, Somayazulu M, Dera P, Mao H K, Hemley R J 2005 Nature Mat. 4 152

    [8]

    Mao H K, Hemley R J 2007 PNAS 104 9114

    [9]

    Yang W, Huang X, Harder R, Clark J N, Robinson I K, Mao H K 2013 Nat. Commun. 4 1680

    [10]

    Liang H N, Ma C L, Du F, Cui Q L, Zou G T 2013 Chin. Phys. B 22 016103

    [11]

    Dave M, Vaidya R, Patel S G, Jani A R 2004 Bull. Mater. Sci. 27 213

    [12]

    Liu X R, Hong S M 2007 Appl. Phys. Lett. 90 251903

    [13]

    Liu X R, Hong S M, L S J, Shen R 2007 Appl. Phys. Lett. 91 081910

    [14]

    Huang D H, Liu X R, Su L, Hu Y, L S J, Liu H L, Hong S M 2007 Chin. Phys. Lett. 24 2441

    [15]

    Hamlin J J, Zocco D A, Sayles T A, Maple M B 2009 Phys. Rev. Lett. 102 177002

    [16]

    Chen L Y, Liu X R, Li M F, Zhang D D, Wang M Y, Hong S M 2013 Acta Phys. Sin. 62 079102 (in Chinese) [陈丽英, 刘秀茹, 黎明发, 张豆豆, 王明友, 洪时明 2013 物理学报 62 079102]

    [17]

    Wakatsuki M, Ichinose K, Aoki T 1972 Jpn. J. Appl. Phys. 11 578

    [18]

    Eremets M I 1996 High Pressure Experimental Methods (New York: Oxford University Press)

    [19]

    Piermarini G J, Block S, Barnett J D 1973 J. Appl. Phys. 44 5377

    [20]

    Besson J M, Pinceaux J P 1979 Rev. Sci. Instrum. 50 541

    [21]

    Chai M, Brown J M 1996 Geophys. Res. Lett. 23 3539

    [22]

    Kenichi T 2001 J. Appl. Phys. 89 662

    [23]

    Angel R J, Bujak M, Zhao J, Gatta G D, Jacobsen S D 2006 J. Appl. Cryst. 40 26

    [24]

    Mao H K, Badro J, Shu J, Hemley R J, Singh A K 2006 J. Phys.: Condens. Matt. 18 S963

    [25]

    Dewaele A, Loubeyre P 2007 High Press. Res. 27 419

    [26]

    Hong S M, Chen L Y, Liu X R, Wu X H, Su L 2005 Rev. Sci. Instrum. 76 053905

    [27]

    Chen L Y 2014 Ph. D. Dissertation (Chengdu: Southwest Jiaotong University) (in Chinese) [陈丽英 2014 博士学位论文 (成都: 西南交通大学)]

  • [1] 田毅, 杜明浩, 张佳威, 贺端威. 立方大腔体静高压装置中叶腊石的传压及密封性能研究. 物理学报, 2024, 73(1): 019101. doi: 10.7498/aps.73.20231087
    [2] 李凤超, 孔振, 吴锦华, 纪欣宜, 梁嘉杰. 柔性压阻式压力传感器的研究进展. 物理学报, 2021, 70(10): 100703. doi: 10.7498/aps.70.20210023
    [3] 戴逸, 王文丹, 法志湘, 王路, 王菊, 梁策, 李星翰. 八面腔压机中一定尺寸的二级压砧上运行的最大组装. 物理学报, 2021, 70(14): 144702. doi: 10.7498/aps.70.20210006
    [4] 崔树稳, 刘伟伟, 朱如曾, 钱萍. 关于非均匀系统局部平均压力张量的推导及对均匀流体的分析. 物理学报, 2019, 68(15): 156801. doi: 10.7498/aps.68.20182189
    [5] 蒋建军, 李和平, 代立东, 胡海英, 赵超帅. 基于拉曼频移的白宝石压腔无压标系统高温高压实验标定. 物理学报, 2015, 64(14): 149101. doi: 10.7498/aps.64.149101
    [6] 张瑜洁, 张万荣, 金冬月, 陈亮, 付强, 郭振杰, 邢光辉, 路志义. Ge组分分布对基区杂质非均匀分布的SiGe HBT温度特性的影响. 物理学报, 2013, 62(3): 034401. doi: 10.7498/aps.62.034401
    [7] 王海阔, 贺端威, 许超, 刘方明, 邓佶睿, 何飞, 王永坤, 寇自力. 复合型多晶金刚石末级压砧的制备并标定六面顶压机6-8型压腔压力至35GPa. 物理学报, 2013, 62(18): 180703. doi: 10.7498/aps.62.180703
    [8] 管俊伟, 贺端威, 王海阔, 彭放, 许超, 王文丹, 王凯雪, 贺凯. 力学结构及末级压砧硬度对八面体压腔高压发生效率的影响. 物理学报, 2012, 61(10): 100701. doi: 10.7498/aps.61.100701
    [9] 曹光辉, 胡凯, 佟维. 基于Logistic均匀分布图像置乱方法. 物理学报, 2011, 60(11): 110508. doi: 10.7498/aps.60.110508
    [10] 吕世杰, 罗建太, 苏磊, 胡云, 袁朝圣, 洪时明. 滑块式六含八超高压实验装置及其压力温度标定. 物理学报, 2009, 58(10): 6852-6857. doi: 10.7498/aps.58.6852
    [11] 王福龙, 贺端威, 房雷鸣, 陈晓芳, 李拥军, 张 伟, 张 剑, 寇自力, 彭 放. 基于铰链式六面顶压机的二级6-8型大腔体静高压装置. 物理学报, 2008, 57(9): 5429-5434. doi: 10.7498/aps.57.5429
    [12] 梁芳营, 刘 洪, 李英骏. 高温超导的压力效应研究. 物理学报, 2006, 55(7): 3683-3687. doi: 10.7498/aps.55.3683
    [13] 谢晓明, 蒋亦民, 王焕友, 曹晓平, 刘 佑. 颗粒堆密度变化对堆底压力分布的影响. 物理学报, 2003, 52(9): 2194-2199. doi: 10.7498/aps.52.2194
    [14] 沈中毅, 洪景新, 殷岫君, 张云, 何寿安. 高压力下非晶铁中局域结构和应力变化的计算机模拟. 物理学报, 1988, 37(2): 283-294. doi: 10.7498/aps.37.283
    [15] 谢盘海. 计算高压下金属的熔化温度、Grüneisen系数及等温压力的新公式. 物理学报, 1983, 32(8): 1086-1092. doi: 10.7498/aps.32.1086
    [16] 胡静竹, 唐汝明, 徐济安. 金刚石压砧高压装置及I2和S高压相变的观察. 物理学报, 1980, 29(10): 1351-1354. doi: 10.7498/aps.29.1351
    [17] 范良藻, 邢维复, 金若冰. 晶体压杆式压力传感器的动力传输性质. 物理学报, 1977, 26(4): 301-306. doi: 10.7498/aps.26.301
    [18] 李家璘, 陈良辰, 沈主同. 双级四压砧(四面体)静态超高压技术. 物理学报, 1975, 24(4): 301-306. doi: 10.7498/aps.24.301
    [19] 刘叔仪. 塑压摩擦线理论与平面压力分布问题之总解答. 物理学报, 1956, 12(6): 491-507. doi: 10.7498/aps.12.491
    [20] 张绍忠. 高压力下液体之比电容. 物理学报, 1934, 1(2): 1-55. doi: 10.7498/aps.1.1-1
计量
  • 文章访问数:  5077
  • PDF下载量:  170
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-22
  • 修回日期:  2016-02-08
  • 刊出日期:  2016-05-05

/

返回文章
返回