搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同粒径Janus微球的自驱动:实验及驱动机制对比

王雷磊 崔海航 张静 郑旭 王磊 陈力

引用本文:
Citation:

不同粒径Janus微球的自驱动:实验及驱动机制对比

王雷磊, 崔海航, 张静, 郑旭, 王磊, 陈力

Two differet self-propulsion types of Janus microspheres: from the comparative experiments and driving mechanisms

Wang Lei-Lei, Cui Hai-Hang, Zhang Jing, Zheng Xu, Wang Lei, Chen Li
PDF
导出引用
  • Janus颗粒是两侧具有不同性质的非均质颗粒的统称.利用Pt-SiO2型Janus微球的Pt一侧催化分解H2O2溶液,可以使得颗粒自驱运动.本文首先从实验角度对比了不同粒径、相同浓度下的两类自驱动现象,结果表明在d~O(1 m)时为扩散泳驱动,d~O(10 m)为气泡驱动,二者在运动轨迹、驱动速度上存在很大差异.随后,分析了主导的力学因素,并根据简化后的受力平衡关系建立了多场耦合的数值模型,重点研究了大粒径下浓度及速度场的分布,据此解释了气泡产生的位置及尺寸,并推断壁面滑移系数是数值模型中的关键匹配参数,及其在不同粒径下变化的可能机理.这一研究将为深入理解自驱动的机理及提高自驱动器件的驱动能力提供理论基础.
    A Janus particle is a general term for a non-uniform particle that has different properties on different sides of particle. For a Pt-SiO2 type of Janus microsphere, Pt side serves as the catalysis surface to decompose H2O2 solution, leading to the self-propulsion motion of particle. In this paper, the relevant experimental phenomena in two driven modes are compared first. The results show that under the same concentration of solution, the microsphere with a diameter of about 1 m experiences self-diffusiophoresis propulsion; whereas, the one with an about 20 m diameter experiences bubble self-propulsion. Significant differences in motional trajectory and propulsion velocity are found between them. Then, the dominated physical factors are analyzed and the multi-field coupling numerical model is constructed based on the simplified force balance analysis. Subsequently, the velocity field distribution and O2 concentration distribution around Janus microsphere are also studied. According to these studies, we explain the position and size of the bubble generated. Further more, we infer that the wall slip coefficient is a key matching parameter in the numerical model, and two slip coefficients with a difference of an order of magnitude are given corresponding to the two types of self-propulsion modes. Then we explain the possible mechanism for the changes of wall slip coefficient under different particle sizes. The present study is beneficial to the in-depth exploration of the self-propulsion mechanism and also provides the theoretical foundation for improving the performance of self-propellant device.
      通信作者: 崔海航, cuihaihang@xauat.edu.cn
    • 基金项目: 陕西省教育厅重点实验室项目(批准号:15JS045)和国家自然科学基金(批准号:11602187)资助的课题.
      Corresponding author: Cui Hai-Hang, cuihaihang@xauat.edu.cn
    • Funds: Project supported by the Special Research Project of Shaanxi Educational Committee, China (Grant No. 15JS045) and the National Natural Science Foundation of China (Grant No. 11602187).
    [1]

    Gennes P G D 1992Angew. Chem. Int. Ed. 31 842

    [2]

    Kapral R 2013J. Chem. Phys. 138 020901

    [3]

    Cameron L A, Theriot J A 1999Proc. Natl. Acad. Sci. USA 96 4908

    [4]

    Bickel T, Majee A, Wrger A 2013Phys. Rev. E:Stat. Nonlin. Soft Matter Phys. 88 493

    [5]

    Howse J R, Jones R A L, Ryan A J, Gough T, Vafabakhsh R, Golestanian R 2007Phys. Rev. Lett. 99 048102

    [6]

    Brady J F 2011J. Fluid Mech. 667 216

    [7]

    Zheng X, Hagen B T, Kaiser A 2013Phys. Rev. E 88 032304

    [8]

    Wu M L, Zhang H Y, Zheng X, Cui H H 2014AIP Adv. 4 031326

    [9]

    Gibbs J G, Zhao Y P 2009Appl. Phys. Lett. 94 163104

    [10]

    Manjare M, Yang B, Zhao Y P 2012Phys. Rev. Lett. 109 128305

    [11]

    Wang S, Wu N 2014Langmuir 30 3477

    [12]

    Manjare M, Yang B, Zhao Y P 2013Phys. Chem. C 117 4657

    [13]

    Paxton W F, Baker P T, Kline T R, Wang Y, Mallouk T E, Sen A 2006J. Am. Chem. Soc. 128 14881

    [14]

    Baraban L, Streubel R, Makarov D, Han L, Karnaushenko D, Schmidt O G, Cuniberti G 2012ACS Nano 7 1360

    [15]

    Wang W, Chiang T Y, Velegol D, Mallouk T E 2013J. Am. Chem. Soc. 135 10557

    [16]

    Wu M L, Zheng X, Cui H H, Li Z H 2014Chin. J. Hydrodyn. 29274(in Chinese)[武美玲, 郑旭, 崔海航, 李战华2014水动力学研究与进展A辑274]

    [17]

    Cui H H, Tan X J, Zhang H Y, Chen L 2015Acta Phys. Sin. 64 134705(in Chinese)[崔海航, 谭晓君, 张鸿雁, 陈力2015物理学报64 134705]

    [18]

    Golestanian R, Liverpool T B, Ajdari A 2007New J. Phys. 9 265

    [19]

    Hu J, Zhang H Y, Zheng X, Cui H H 2014Chin. J. Hydrodyn. 29377(in Chinese)[胡静, 张鸿雁, 郑旭, 崔海航2014水动力学研究与进展, 29 377]

    [20]

    Ebbens S, Tu M H, Howse J R, Golestanian R 2012Phys. Rev. E 85 02401

  • [1]

    Gennes P G D 1992Angew. Chem. Int. Ed. 31 842

    [2]

    Kapral R 2013J. Chem. Phys. 138 020901

    [3]

    Cameron L A, Theriot J A 1999Proc. Natl. Acad. Sci. USA 96 4908

    [4]

    Bickel T, Majee A, Wrger A 2013Phys. Rev. E:Stat. Nonlin. Soft Matter Phys. 88 493

    [5]

    Howse J R, Jones R A L, Ryan A J, Gough T, Vafabakhsh R, Golestanian R 2007Phys. Rev. Lett. 99 048102

    [6]

    Brady J F 2011J. Fluid Mech. 667 216

    [7]

    Zheng X, Hagen B T, Kaiser A 2013Phys. Rev. E 88 032304

    [8]

    Wu M L, Zhang H Y, Zheng X, Cui H H 2014AIP Adv. 4 031326

    [9]

    Gibbs J G, Zhao Y P 2009Appl. Phys. Lett. 94 163104

    [10]

    Manjare M, Yang B, Zhao Y P 2012Phys. Rev. Lett. 109 128305

    [11]

    Wang S, Wu N 2014Langmuir 30 3477

    [12]

    Manjare M, Yang B, Zhao Y P 2013Phys. Chem. C 117 4657

    [13]

    Paxton W F, Baker P T, Kline T R, Wang Y, Mallouk T E, Sen A 2006J. Am. Chem. Soc. 128 14881

    [14]

    Baraban L, Streubel R, Makarov D, Han L, Karnaushenko D, Schmidt O G, Cuniberti G 2012ACS Nano 7 1360

    [15]

    Wang W, Chiang T Y, Velegol D, Mallouk T E 2013J. Am. Chem. Soc. 135 10557

    [16]

    Wu M L, Zheng X, Cui H H, Li Z H 2014Chin. J. Hydrodyn. 29274(in Chinese)[武美玲, 郑旭, 崔海航, 李战华2014水动力学研究与进展A辑274]

    [17]

    Cui H H, Tan X J, Zhang H Y, Chen L 2015Acta Phys. Sin. 64 134705(in Chinese)[崔海航, 谭晓君, 张鸿雁, 陈力2015物理学报64 134705]

    [18]

    Golestanian R, Liverpool T B, Ajdari A 2007New J. Phys. 9 265

    [19]

    Hu J, Zhang H Y, Zheng X, Cui H H 2014Chin. J. Hydrodyn. 29377(in Chinese)[胡静, 张鸿雁, 郑旭, 崔海航2014水动力学研究与进展, 29 377]

    [20]

    Ebbens S, Tu M H, Howse J R, Golestanian R 2012Phys. Rev. E 85 02401

  • [1] 武晓东, 陈沿州, 韩瑞, 郭雨怡, 庄杰, 石富坤. 液体中高压脉冲电场产生扩散气泡的规律. 物理学报, 2023, 72(21): 214701. doi: 10.7498/aps.72.20230443
    [2] 王丽娜, 陈力, 盛敏佳, 王雷磊, 崔海航, 郑旭, 黄明华. 体相微马达双气泡聚并驱动的界面演化机制. 物理学报, 2023, 72(16): 164703. doi: 10.7498/aps.72.20230608
    [3] 周宏伟, 欧阳文泽, 徐升华. 带电微粒在滤膜附近的定向运动. 物理学报, 2023, 72(3): 038201. doi: 10.7498/aps.72.20220567
    [4] 赵昶, 纪献兵, 杨聿昊, 孟宇航, 徐进良, 彭家略. Janus颗粒撞击气泡的行为特征. 物理学报, 2022, 71(21): 214701. doi: 10.7498/aps.71.20220632
    [5] 彭家略, 郭浩, 尤天涯, 纪献兵, 徐进良. 液滴碰撞Janus颗粒球表面的行为特征. 物理学报, 2021, 70(4): 044701. doi: 10.7498/aps.70.20201358
    [6] 许少锋, 楼应侯, 吴尧锋, 王向垟, 何平. 微通道疏水表面滑移的耗散粒子动力学研究. 物理学报, 2019, 68(10): 104701. doi: 10.7498/aps.68.20182002
    [7] 张红, 宗奕吾, 杨明成, 赵坤. 自驱动的Janus微球在具有不同障碍物的表面上的运动行为研究. 物理学报, 2019, 68(13): 134702. doi: 10.7498/aps.68.20190711
    [8] 顾娟, 黄荣宗, 刘振宇, 吴慧英. 一种滑移区气体流动的格子Boltzmann曲边界处理新格式. 物理学报, 2017, 66(11): 114701. doi: 10.7498/aps.66.114701
    [9] 周光雨, 陈力, 张鸿雁, 崔海航. 基于格子Boltzmann方法的自驱动Janus颗粒扩散泳力. 物理学报, 2017, 66(8): 084703. doi: 10.7498/aps.66.084703
    [10] 沈明仁, 刘锐, 厚美瑛, 杨明成, 陈科. 自扩散泳微观转动马达的介观模拟. 物理学报, 2016, 65(17): 170201. doi: 10.7498/aps.65.170201
    [11] 姜玉婷, 齐海涛. 微平行管道内Eyring流体的电渗滑移流动. 物理学报, 2015, 64(17): 174702. doi: 10.7498/aps.64.174702
    [12] 崔海航, 谭晓君, 张鸿雁, 陈力. 自驱动Janus微球近壁运动特性实验与数值模拟研究. 物理学报, 2015, 64(13): 134705. doi: 10.7498/aps.64.134705
    [13] 刘飞飞, 魏守水, 魏长智, 任晓飞. 基于速度源修正的浸入边界-晶格玻尔兹曼法研究仿生微流体驱动模型. 物理学报, 2014, 63(19): 194704. doi: 10.7498/aps.63.194704
    [14] 刘云龙, 张阿漫, 王诗平, 田昭丽. 基于边界元法的近平板圆孔气泡动力学行为研究. 物理学报, 2013, 62(14): 144703. doi: 10.7498/aps.62.144703
    [15] 蒋丹, 李松晶, 杨平. 无阀微泵腔内气泡对周期驱动压力的影响. 物理学报, 2013, 62(22): 224703. doi: 10.7498/aps.62.224703
    [16] 刘云龙, 张阿漫, 王诗平, 田昭丽. 基于边界元法的气泡同波浪相互作用研究. 物理学报, 2012, 61(22): 224702. doi: 10.7498/aps.61.224702
    [17] 胡艺, 葛云, 章东, 郑海荣, 龚秀芬. 调频超声脉冲驱动微气泡运动偏移的研究. 物理学报, 2009, 58(7): 4746-4751. doi: 10.7498/aps.58.4746
    [18] 夏蒙棼, 仇韵清. 单波驱动飞行粒子随机扩散. 物理学报, 1986, 35(1): 7-16. doi: 10.7498/aps.35.7
    [19] 夏蒙棼, 仇韵清. 静电波驱动的空间扩散. 物理学报, 1985, 34(3): 322-331. doi: 10.7498/aps.34.322
    [20] 钱临照, 何寿安. 铝单晶体滑移的电子顯微镜颧察(一). 物理学报, 1955, 11(3): 287-289. doi: 10.7498/aps.11.287
计量
  • 文章访问数:  4895
  • PDF下载量:  217
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-06
  • 修回日期:  2016-08-15
  • 刊出日期:  2016-11-05

/

返回文章
返回