搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用钕铁硼(NdFeB)永磁材料实现磁斗篷

戴存礼 蹇兴亮 赵艳艳 姚雪霞 赵志刚

引用本文:
Citation:

用钕铁硼(NdFeB)永磁材料实现磁斗篷

戴存礼, 蹇兴亮, 赵艳艳, 姚雪霞, 赵志刚

Magnetic cloak made of NdFeB permanent magnetic material

Dai Cun-Li, Jian Xing-Liang, Zhao Yan-Yan, Yao Xue-Xia, Zhao Zhi-Gang
PDF
导出引用
  • 固有磁化强度方向与外磁场方向相反的钕铁硼(NdFeB)空心圆柱和固有磁化强度方向与外磁场方向相同的钕铁硼铬(NdFeCrB)空心圆柱镶嵌在一起,组成一个磁化强度方向相反的双层磁环.利用柱坐标系中磁标势的公式及本构关系,推导了均匀外磁场在双层空心圆柱永磁体内外的磁场强度,得到了半径比率与外加磁场、相对磁导率及磁化强度的关系.计算结果表明,当施加均匀外磁场时,双层空心圆柱NdFeB永磁体可以屏蔽静磁场从而实现磁斗篷.
    In the past few years, the concept of an electromagnetic invisibility cloak has received much attention. Based on the pioneering theoretical work, invisibility cloaks have been greatly developed. Inspired by those theoretical researches, varieties of electromagnetic cloaks, acoustic cloaks, matter wave cloaks, mass diffusion cloaks, heat cloaks, magnetic cloaks, dc magnetic cloaks and electrostatic cloaks have been designed theoretically and demonstrated experimentally. The first experimentally demonstrated invisible cloak is made of metamaterial with simplified material parameters. The simplified cloak inherits some properties of the ideal cloak, but finite scattering exists. It is difficult to develop a perfectly invisible electromagnetic cloak having homogeneous and anisotropic components by using the natural materials. In this work, a bi-layer magnetic cloak made of neodymium iron boron (NdFeB) permanent magnetic material is designed. When the direction of the intrinsic magnetization intensity of the material is opposite to that of the applied magnetic field, the magnetic field lines will be repelled. When the direction of the intrinsic magnetization intensity is the same as the direction of applied magnetic field, the magnetic field lines will be attracted. With those properties, the two magnetic rings are designed, one is made of NdFeB, and the other is made of neodymium iron chromium boron (NdFeCrB). The direction of the intrinsic magnetization intensity is opposite or parallel to the applied magnetic field. The two magnetic rings nest a bi-layer magnetic ring. When a uniform magnetic field is applied, by using the formulas of the magnetic scalar potential in a cylindrical coordinate system and the constitute relations of magnetic rings, the distribution of magnetic field and scalar potential within the bi-layer concentric cylindrical permanent magnetic material are deduced. Based on theory as demonstrated, the bi-layer permanent magnetic material cylinder can cloak a magneto-static field. Under the conditions of the magnetic cloak with the specific relative permeability and the intrinsic magnetization intensity, the relation between the radius ratio and the applied magnetic field is obtained. The calculation results show that when the radius ratio and the applied magnetic field satisfy this relationship, the bi-layer permanent magnetic material cylinder can cloak the magneto-static field. The magnetic field distributions of both the magnetic non-cloak and magnetic cloak are simulated to show the effectiveness of the proposed theory.In summary, the results show that the cloak performance is influenced not only by the size parameters of the permanent magnetic material cylinder but also the relative permeability, the intrinsic magnetization intensity, and the applied magnetic field. The NdFeB permanent magnetic material used in the magnetic cloak is very common and can be easily obtained, which gives more convenience for the design and application of the magnetic cloak.
      通信作者: 赵志刚, zhaozhigang716@163.com
    • 基金项目: 中央高校基本科研业务费专项资金(批准号:KYZ201563,KJSY201517)和国家自然科学基金(批准号:41301261,11247218)资助的课题.
      Corresponding author: Zhao Zhi-Gang, zhaozhigang716@163.com
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities of China (Grant Nos. KYZ201563, KJSY201517) and the National Natural Science Foundation of China (Grant Nos. 41301261, 11247218).
    [1]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [2]

    Leonhardt U 2006 Science 312 1777

    [3]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D 2006 Science 314 977

    [4]

    Ma Y, Liu Y, Lan L, Wu T, Jiang W, Ong C K, He S 2013 Sci. Rep 3 2182

    [5]

    Chen H, Chan C T 2010 J. Phys. D 43 113001

    [6]

    Zigoneanu L, Popa B I, Cummer S A 2014 Nat. Mater. 13 352

    [7]

    Lin D, Luan P 2012 Phys. Lett. A 376 675

    [8]

    Zeng L, Tang Z, Li H, Zhao Y, Dai C, Song R 2014 Mod. Phys. Lett. B 28 1450098

    [9]

    Zeng L, Song R 2013 Sci. Rep 3 3359

    [10]

    Kohn R V, Shen H, Vogelius M S, Weinstein M 2008 Inverse Probl. 24 015016

    [11]

    Zeng L, Zhao Y, Zhao Z, Li H 2015 Physica B Condens. Matter. 462 70

    [12]

    Souc J, Solovyov M, Gomory F, Prat-Camps J, Navau C, Sanchez A 2013 New J. Phys. 15 053019

    [13]

    Zhu J, Jiang W, Liu Y, Yin G, Yuan J, He S, Ma Y 2015 Nat. Commun. 6 8931

    [14]

    Gömöry F, Solovyov M,Šouc J, Navau C, Prat-Camps J, Sanchez A 2012 Science 335 1466

    [15]

    Narayana S, Sato Y 2012 Adv. Mater. 24 71

    [16]

    Yao P, Liang Z, Jiang X 2008 App Phys. Lett. 92 31111

    [17]

    Yang F, Mei Z L, Jin T Y, Cui T J 2012 Phys. Rev. Lett. 109 053902

    [18]

    Alitalo P, Tretyakov S A 2009 Mater. Today 12 22

    [19]

    Zhang B L, Wu B I 2009 Phys. Rev. Lett. 103 243901

    [20]

    Wang Z, Luo X Y, Liu J Y, Dong J F 2013 Acta Phys. Sin. 62 024101 (in Chinese)[王战, 罗孝阳, 刘锦景, 董建峰2013物理学报62 024101]

    [21]

    Wang Z, Dong J F, Liu J Y, Luo X Y 2012 Acta Phys. Sin. 61 204101 (in Chinese)[王战, 董建峰, 刘锦景, 罗孝阳2012物理学报61 204101]

    [22]

    Shen H J, Wen J H, Yu D L, Cai L, Wen X S 2012 Acta Phys. Sin. 61 134303 (in Chinese)[沈惠杰, 温激鸿, 郁殿龙, 蔡力, 温熙森2012物理学报61 134303]

    [23]

    Prat-Camps J, Sanchez A, Navau C 2013 Supercond. Sci Tech. 26 74001

  • [1]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [2]

    Leonhardt U 2006 Science 312 1777

    [3]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D 2006 Science 314 977

    [4]

    Ma Y, Liu Y, Lan L, Wu T, Jiang W, Ong C K, He S 2013 Sci. Rep 3 2182

    [5]

    Chen H, Chan C T 2010 J. Phys. D 43 113001

    [6]

    Zigoneanu L, Popa B I, Cummer S A 2014 Nat. Mater. 13 352

    [7]

    Lin D, Luan P 2012 Phys. Lett. A 376 675

    [8]

    Zeng L, Tang Z, Li H, Zhao Y, Dai C, Song R 2014 Mod. Phys. Lett. B 28 1450098

    [9]

    Zeng L, Song R 2013 Sci. Rep 3 3359

    [10]

    Kohn R V, Shen H, Vogelius M S, Weinstein M 2008 Inverse Probl. 24 015016

    [11]

    Zeng L, Zhao Y, Zhao Z, Li H 2015 Physica B Condens. Matter. 462 70

    [12]

    Souc J, Solovyov M, Gomory F, Prat-Camps J, Navau C, Sanchez A 2013 New J. Phys. 15 053019

    [13]

    Zhu J, Jiang W, Liu Y, Yin G, Yuan J, He S, Ma Y 2015 Nat. Commun. 6 8931

    [14]

    Gömöry F, Solovyov M,Šouc J, Navau C, Prat-Camps J, Sanchez A 2012 Science 335 1466

    [15]

    Narayana S, Sato Y 2012 Adv. Mater. 24 71

    [16]

    Yao P, Liang Z, Jiang X 2008 App Phys. Lett. 92 31111

    [17]

    Yang F, Mei Z L, Jin T Y, Cui T J 2012 Phys. Rev. Lett. 109 053902

    [18]

    Alitalo P, Tretyakov S A 2009 Mater. Today 12 22

    [19]

    Zhang B L, Wu B I 2009 Phys. Rev. Lett. 103 243901

    [20]

    Wang Z, Luo X Y, Liu J Y, Dong J F 2013 Acta Phys. Sin. 62 024101 (in Chinese)[王战, 罗孝阳, 刘锦景, 董建峰2013物理学报62 024101]

    [21]

    Wang Z, Dong J F, Liu J Y, Luo X Y 2012 Acta Phys. Sin. 61 204101 (in Chinese)[王战, 董建峰, 刘锦景, 罗孝阳2012物理学报61 204101]

    [22]

    Shen H J, Wen J H, Yu D L, Cai L, Wen X S 2012 Acta Phys. Sin. 61 134303 (in Chinese)[沈惠杰, 温激鸿, 郁殿龙, 蔡力, 温熙森2012物理学报61 134303]

    [23]

    Prat-Camps J, Sanchez A, Navau C 2013 Supercond. Sci Tech. 26 74001

  • [1] 隋玉梅, 何兆剑, 毕仁贵, 孔鹏, 吴吉恩, 赵鹤平, 邓科. 基于亥姆霍兹共振的超薄弧形声学超表面地毯斗篷. 物理学报, 2024, 73(6): 064301. doi: 10.7498/aps.73.20231706
    [2] 苗钰钊, 唐桂华. 非封闭式热斗篷热防护特性. 物理学报, 2024, 73(3): 034401. doi: 10.7498/aps.73.20231262
    [3] 夏舸, 杨立, 寇蔚, 杜永成. 非均匀背景中任意柱状热斗篷的研究与设计. 物理学报, 2017, 66(11): 114401. doi: 10.7498/aps.66.114401
    [4] 夏舸, 杨立, 寇蔚, 杜永成. 基于变换热力学的三维任意形状热斗篷设计. 物理学报, 2017, 66(10): 104401. doi: 10.7498/aps.66.104401
    [5] 邓东阁, 武新军, 左苏. 基于永磁恒定磁场激励的起始磁化曲线测量. 物理学报, 2016, 65(14): 148101. doi: 10.7498/aps.65.148101
    [6] 陆智淼, 蔡力, 温激鸿, 温熙森. 基于五模材料的圆柱声隐身斗篷坐标变换设计. 物理学报, 2016, 65(17): 174301. doi: 10.7498/aps.65.174301
    [7] 秦春雷, 杨晶晶, 黄铭, 胡艺耀. 基于拉普拉斯方程的任意形状热斗篷研究与设计. 物理学报, 2014, 63(19): 194402. doi: 10.7498/aps.63.194402
    [8] 毛福春, 李廷华, 黄铭, 杨晶晶, 陈俊昌. 任意横截面柱形热斗篷研究与设计. 物理学报, 2014, 63(1): 014401. doi: 10.7498/aps.63.014401
    [9] 罗孝阳, 刘道亚, 姚丽芳, 董建峰. 新型椭圆形互补隐身斗篷设计. 物理学报, 2014, 63(8): 084101. doi: 10.7498/aps.63.084101
    [10] 王战, 罗孝阳, 刘锦景, 董建峰. 二维椭圆形散射转移斗篷的设计研究. 物理学报, 2013, 62(2): 024101. doi: 10.7498/aps.62.024101
    [11] 王战, 董建峰, 刘锦景, 罗孝阳. 基于线变换的椭圆柱外隐身斗篷的设计研究. 物理学报, 2012, 61(20): 204101. doi: 10.7498/aps.61.204101
    [12] 沈惠杰, 温激鸿, 郁殿龙, 蔡力, 温熙森. 基于主动声学超材料的圆柱声隐身斗篷设计研究. 物理学报, 2012, 61(13): 134303. doi: 10.7498/aps.61.134303
    [13] 杜广星, 钱宝良. 偏置磁极周期会切永磁场的理论分析. 物理学报, 2010, 59(3): 1726-1733. doi: 10.7498/aps.59.1726
    [14] 庞利佳, 孙光飞, 陈菊芳, 强文江, 张锦标, 黎文安. 纳米晶复合Pr2Fe14B/α-Fe永磁材料磁性的研究. 物理学报, 2006, 55(6): 3049-3053. doi: 10.7498/aps.55.3049
    [15] 孙光爱, 陈 波, 杜红林. R(Fe,Mo)12型稀土永磁材料热膨胀反常现象研究. 物理学报, 2005, 54(9): 4240-4244. doi: 10.7498/aps.54.4240
    [16] 朱明刚, 李岫梅, 郭朝晖, 李 卫. Nd-Fe-B永磁材料低磁时效机理研究. 物理学报, 2005, 54(12): 5895-5900. doi: 10.7498/aps.54.5895
    [17] 包卫平, 许光明, 班春燕, 崔建忠. 静磁场对镁合金凝固组织的影响. 物理学报, 2004, 53(6): 2024-2028. doi: 10.7498/aps.53.2024
    [18] 张宏伟, 荣传兵, 张绍英, 沈保根. 高性能纳米复合永磁材料的模拟计算研究. 物理学报, 2004, 53(12): 4347-4352. doi: 10.7498/aps.53.4347
    [19] 张鹏翔, 曹克定. 静磁波法研究材料的磁性. 物理学报, 1985, 34(11): 1407-1412. doi: 10.7498/aps.34.1407
    [20] 盛谏. 永磁材料退磁曲线的几何作图法. 物理学报, 1978, 27(3): 331-338. doi: 10.7498/aps.27.331
计量
  • 文章访问数:  4843
  • PDF下载量:  223
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-31
  • 修回日期:  2016-09-02
  • 刊出日期:  2016-12-05

/

返回文章
返回