搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

型谐振腔结构的光学透射特性

王维 高社生 孟阳

引用本文:
Citation:

型谐振腔结构的光学透射特性

王维, 高社生, 孟阳

Transmission characteristics of surface plasmon polaritons in -shaped resonator

Wang Wei, Gao She-Sheng, Meng Yang
PDF
导出引用
  • 应用有限元方法研究了在圆形谐振腔结构内嵌椭圆形棒(型谐振腔结构)的光学透射特性,结果表明,该结构对于光学滤波具有很强的可调性.另外,通过调节椭圆结构的倾斜角度破坏该结构的对称性,能够产生明显的法诺共振效应.这些结构对于光学滤波和折射率传感器结构的设计有一定的指导意义.
    To improve the efficiency of transmission, in this paper, we propose a structure of the surface plasmon polariton embedded in a sliver circular resonator with a sliver nanoellispod(-shaped resonator), and also investigate its optical properties by the finite element method. Firstly, we study the optical properties of -shaped resonator at a=120 nm and =0 with different values of b. The results show that the -shaped resonator structure has the narrow transmission peaks, and the transmittance spectrum can be tuned by modifying the structure parameters. So this nanostructure would find applications in the designing of the novel filter. Secondly, compared with the former Fano resonance which results from the localized plasmon resonance coupling, the Fano resonance which results from the resonance of the surface plasmon polaritons coupling is represented by this structure. When the symmetry of -shaped resonator is broken, the Fano resonance will be observed clearly. Like the Fano resonance which results from the localized plasmon resonance coupling between the bright mode of metallic nanostructure and the dark mode of metallic nanostructure, the results show that the dipolar, quadrupolar, and octupolar Fano resonances of -shaped resonator structure occur, which are caused by the destructive interference between the bright dipolar mode and the dark dipolar mode, quadrupolar mode, and octupolar mode. When we take the rotation angle as 0 and 90, 15 and 75, 30 and 90 respectively, the Fano asymmetric transmittance spectra of -shaped resonator are similar, which result from the same degree of asymmetry. The larger the degree of asymmetry of the -shaped resonator structure, the more obvious the Fano resonance is. Thirdly, the size of this structure has significant effects on the transmission peak positions, line width, and intensity of the Fano resonance, in particular, in the case that =0 corresponds to the generation of FR(FR on) and in the case corresponding to the vanishing of FR(FR off). therefore, this phenomenon of -shaped resonator will provide a new strategy for the surface plasmon polariton Fano switch. We hope that this nanostructure has potential applications in designing filter, biological sensors, and Fano switch.
      通信作者: 王维, wangweixgd@163.com
      Corresponding author: Wang Wei, wangweixgd@163.com
    [1]

    Falk A L, Koppens F H L, Yu C L, Kang K, Snapp N D, Akimov A V, Jo M H, Lukin M D, Park H 2009 Nat. Phys. 5 475

    [2]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [3]

    Dionne J A, Sweatlock L A, Atwater H A 2006 Phys. Rev. B 3 035407

    [4]

    Lee T W, Gray S 2005 Opt. Express 13 9652

    [5]

    Gao H, Shi H, Wang C, Du C, Luo X, Deng Q, L Y, Lin X, Yao H 2005 Opt. Express 13 10795

    [6]

    Hosseini A, Massoud Y 2007 Appl. Phys. Lett. 90 181102

    [7]

    Wang G X, Lu H, Liu X M, Mao D, Duan L N 2011 Opt. Express 19 3513

    [8]

    Yang Y R, Guan J F 2016 Acta Phys. Sin. 65 057301 (in Chinese)[杨韵茹, 关建飞2016物理学报65 057301]

    [9]

    Pang S F, Zhang Y Y, Huo Y P, Xie Y, Hao L M, Zhang T 2015 Plasmonics 10 1723

    [10]

    Han Z H, He S L 2007 Opt. Commun. 278 199

    [11]

    Gramotnev D K, Bozhevolnyi S I 2010 Nature Photon. 4 83

    [12]

    Barrow S J, Funston A M, Wei X Z, Mulvaney P 2013 Nano Today 8 138

    [13]

    Cetin A E, Altug H 2012 ACS Nano 11 9989

    [14]

    Jain P K, Huang X H, El-Sayed I H, El-Sayed M A 2007 Plasmonics 2 107

    [15]

    Thyagarajan K, Butet J, Martin O J F 2013 Nano Lett. 13 1847

    [16]

    Zhao K, Huo Y, Liu T, Li J, He B, Zhao T, Liu L, Li Y 2015 Plasmonics 10 1041

    [17]

    Sonnefraud Y, Verellen N, Sobhani H, Vandenbosch G A E, Moshchalkov V V, Dorpe P V, Nordlander P, Maier S A 2010 ACS Nano 3 1664

    [18]

    Habteyes T G, Dhuey S, Cabrini S, Schuck P J, Leone S R 2011 Nano Lett. 11 1819

    [19]

    Dregely D, Hentschel M, Giessen H 2011 ACS Nano 5 8202

    [20]

    Luo S, Fu T, Zhang Z Y 2013 Acta Phys. Sin. 62 147303 (in Chinese)[罗松, 付统, 张中月2013物理学报62 147303]

    [21]

    Feng H, Sonnefraud Y, Dorpe P V, Maier S A, Halas N J, Nordlander P 2008 Nano Lett. 11 3983

    [22]

    Fan J A, Bao K, Wu C, Bao J, Bardhan R, Halas N J, Manoharan V N, Shvets G, Nordlander P, Capasso F 2010 Nano Lett. 10 4680

    [23]

    Zhao K, Huo Y, Liu T, Wu Y, Zhao T, Liu L, Li Y, Deng J 2016 Plasmonics 10 1041

  • [1]

    Falk A L, Koppens F H L, Yu C L, Kang K, Snapp N D, Akimov A V, Jo M H, Lukin M D, Park H 2009 Nat. Phys. 5 475

    [2]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [3]

    Dionne J A, Sweatlock L A, Atwater H A 2006 Phys. Rev. B 3 035407

    [4]

    Lee T W, Gray S 2005 Opt. Express 13 9652

    [5]

    Gao H, Shi H, Wang C, Du C, Luo X, Deng Q, L Y, Lin X, Yao H 2005 Opt. Express 13 10795

    [6]

    Hosseini A, Massoud Y 2007 Appl. Phys. Lett. 90 181102

    [7]

    Wang G X, Lu H, Liu X M, Mao D, Duan L N 2011 Opt. Express 19 3513

    [8]

    Yang Y R, Guan J F 2016 Acta Phys. Sin. 65 057301 (in Chinese)[杨韵茹, 关建飞2016物理学报65 057301]

    [9]

    Pang S F, Zhang Y Y, Huo Y P, Xie Y, Hao L M, Zhang T 2015 Plasmonics 10 1723

    [10]

    Han Z H, He S L 2007 Opt. Commun. 278 199

    [11]

    Gramotnev D K, Bozhevolnyi S I 2010 Nature Photon. 4 83

    [12]

    Barrow S J, Funston A M, Wei X Z, Mulvaney P 2013 Nano Today 8 138

    [13]

    Cetin A E, Altug H 2012 ACS Nano 11 9989

    [14]

    Jain P K, Huang X H, El-Sayed I H, El-Sayed M A 2007 Plasmonics 2 107

    [15]

    Thyagarajan K, Butet J, Martin O J F 2013 Nano Lett. 13 1847

    [16]

    Zhao K, Huo Y, Liu T, Li J, He B, Zhao T, Liu L, Li Y 2015 Plasmonics 10 1041

    [17]

    Sonnefraud Y, Verellen N, Sobhani H, Vandenbosch G A E, Moshchalkov V V, Dorpe P V, Nordlander P, Maier S A 2010 ACS Nano 3 1664

    [18]

    Habteyes T G, Dhuey S, Cabrini S, Schuck P J, Leone S R 2011 Nano Lett. 11 1819

    [19]

    Dregely D, Hentschel M, Giessen H 2011 ACS Nano 5 8202

    [20]

    Luo S, Fu T, Zhang Z Y 2013 Acta Phys. Sin. 62 147303 (in Chinese)[罗松, 付统, 张中月2013物理学报62 147303]

    [21]

    Feng H, Sonnefraud Y, Dorpe P V, Maier S A, Halas N J, Nordlander P 2008 Nano Lett. 11 3983

    [22]

    Fan J A, Bao K, Wu C, Bao J, Bardhan R, Halas N J, Manoharan V N, Shvets G, Nordlander P, Capasso F 2010 Nano Lett. 10 4680

    [23]

    Zhao K, Huo Y, Liu T, Wu Y, Zhao T, Liu L, Li Y, Deng J 2016 Plasmonics 10 1041

  • [1] 管福鑫, 董少华, 何琼, 肖诗逸, 孙树林, 周磊. 表面等离极化激元的散射及波前调控. 物理学报, 2020, 69(15): 157804. doi: 10.7498/aps.69.20200614
    [2] 陈颖, 谢进朝, 周鑫德, 张灿, 杨惠, 李少华. 基于表面等离子体诱导透明的半封闭T形波导侧耦合圆盘腔的波导滤波器. 物理学报, 2019, 68(23): 237301. doi: 10.7498/aps.68.20191068
    [3] 祁云平, 周培阳, 张雪伟, 严春满, 王向贤. 基于塔姆激元-表面等离极化激元混合模式的单缝加凹槽纳米结构的增强透射. 物理学报, 2018, 67(10): 107104. doi: 10.7498/aps.67.20180117
    [4] 祁云平, 张雪伟, 周培阳, 胡兵兵, 王向贤. 基于十字连通形环形谐振腔金属-介质-金属波导的折射率传感器和滤波器. 物理学报, 2018, 67(19): 197301. doi: 10.7498/aps.67.20180758
    [5] 杨韵茹, 关建飞. 基于金属-电介质-金属波导结构的等离子体滤波器的数值研究. 物理学报, 2016, 65(5): 057301. doi: 10.7498/aps.65.057301
    [6] 张永元, 罗李娜, 张中月. 十字结构银纳米线的表面等离极化激元分束特性. 物理学报, 2015, 64(9): 097303. doi: 10.7498/aps.64.097303
    [7] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [8] 陈颖, 王文跃, 于娜. 粒子群算法优化异质结构光子晶体环形腔滤波特性. 物理学报, 2014, 63(3): 034205. doi: 10.7498/aps.63.034205
    [9] 尹彬, 柏云龙, 齐艳辉, 冯素春, 简水生. 拉锥型啁啾光纤光栅滤波器的研究. 物理学报, 2013, 62(21): 214213. doi: 10.7498/aps.62.214213
    [10] 王五松, 张利伟, 冉佳, 张冶文. 微波频段表面等离子激元波导滤波器的实验研究. 物理学报, 2013, 62(18): 184203. doi: 10.7498/aps.62.184203
    [11] 罗松, 付统, 张中月. 内嵌银纳米棒圆形银缝隙结构中的法诺共振现象. 物理学报, 2013, 62(14): 147303. doi: 10.7498/aps.62.147303
    [12] 陈园园, 邹仁华, 宋钢, 张恺, 于丽, 赵玉芳, 肖井华. 纳米银线波导中表面等离极化波激发和辐射的偏振特性研究. 物理学报, 2012, 61(24): 247301. doi: 10.7498/aps.61.247301
    [13] 张志东, 赵亚男, 卢东, 熊祖洪, 张中月. 基于圆弧谐振腔的金属-介质-金属波导滤波器的数值研究. 物理学报, 2012, 61(18): 187301. doi: 10.7498/aps.61.187301
    [14] 赵冬梅, 施宇蕾, 周庆莉, 李磊, 孙会娟, 张存林. 基于人工复合材料的太赫兹波双波段滤波. 物理学报, 2011, 60(9): 093301. doi: 10.7498/aps.60.093301
    [15] 陈凡, 郝军, 李红根, 曹庄琪. 基于古斯-汉欣位移的双通道窄带滤波器. 物理学报, 2011, 60(7): 074223. doi: 10.7498/aps.60.074223
    [16] 杨春云, 徐旭明, 叶涛, 缪路平. 一种新型可调制的光子晶体环形腔滤波器. 物理学报, 2011, 60(1): 017807. doi: 10.7498/aps.60.017807
    [17] 左涛, 赵新杰, 王小坤, 岳宏卫, 方兰, 阎少林. LaAlO3衬底高温超导线性相位滤波器. 物理学报, 2009, 58(6): 4194-4198. doi: 10.7498/aps.58.4194
    [18] 胡沁春, 何怡刚, 郭迪新, 李宏民. 基于开关电流技术的小波变换的滤波器电路实现. 物理学报, 2006, 55(2): 641-647. doi: 10.7498/aps.55.641
    [19] 缪江平, 吴宗汉, 孙承休, 孙岳明. 表面等离极化激元对电荷输运影响的自洽场理论研究. 物理学报, 2004, 53(8): 2728-2733. doi: 10.7498/aps.53.2728
    [20] 张家树, 肖先赐. 混沌时间序列的自适应高阶非线性滤波预测. 物理学报, 2000, 49(7): 1221-1227. doi: 10.7498/aps.49.1221
计量
  • 文章访问数:  5128
  • PDF下载量:  257
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-01
  • 修回日期:  2016-09-25
  • 刊出日期:  2017-01-05

/

返回文章
返回