搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

神光Ⅲ激光装置直接驱动内爆靶产生的连续谱X光源

王雅琴 胡广月 赵斌 郑坚

引用本文:
Citation:

神光Ⅲ激光装置直接驱动内爆靶产生的连续谱X光源

王雅琴, 胡广月, 赵斌, 郑坚

Spectrally smooth X-ray source produced by laser direct driven DT implosion target on SG-Ⅲ laser facility

Wang Ya-Qin, Hu Guang-Yue, Zhao Bin, Zheng Jian
PDF
导出引用
  • 激光驱动的内爆靶通过轫致辐射过程可以产生覆盖1-100 keV能区的小尺寸、短脉冲和高亮度的光滑连续谱X光源,可用于高密度等离子体的点投影照相和吸收谱诊断等.本文对30-180 kJ输出能量的神光Ⅲ激光装置直接驱动氘氚冷冻靶产生的连续谱X光源辐射特性进行了模拟研究,为优化内爆光源提供物理基础.采用了美国OMEGA激光装置和美国国家点火装置(NIF)使用的定标率来给出不同驱动能量时的靶参数和激光脉冲参数.研究发现,内爆靶丸在停滞阶段瞬时的密度和温度剧增可以产生尺寸约100 μm、发光时间约150 ps的X光脉冲;X光辐射主要产生于被压缩的氘氚冰壳层内侧、而不是中心的高温气体热斑区;等离子体的自吸收可以显著降低1-3 keV的较低能区的X光发射,但对更高能区没有影响;X光辐射主要集中在30 keV的硬X光辐射、但对<30 keV的较软的X光辐射没有明显贡献.
    Spectrally smooth X-ray sources can be used in point projection radiography and absorption spectrometry diagnostics of dense plasmas. But conventionally they are end at about 3.5 keV, which can only be used to diagnose materials up to Z=18. Spectrally smooth X-ray sources above 3.5 keV are needed to study higher-Z materials. Bremsstrahlung radiation from a laser driven implosion target can produce a small size, short duration and spectrally smooth X-ray source in the range of 1-100 keV. They have been successfully applied in the investigations of middle-Z materials in the 3-7 keV X-ray range. Despite much interest for backlit X-ray studies of middle- and high-Z dense materials, research on implosion X-ray sources are scarce. Characterization of the implosion X-ray source is needed to understand and improve its performance.To provide a physical basis for optimization, the properties of the deuterium-tritium (DT) implosion target X-ray source driven by 30-180 kJ laser pulses were explored using a radiation hydrodynamics code.We focus on laser pulse energies of 30-180 kJ at 351 nm wavelength to match the range of the OMEGA laser on the low end and the SG-Ⅲ laser on the high end. The laser pulse parameters are scaled with the target size in identical fashion to that of the OMEGA laser and the ignition designs of the National Ignition Facility to maintain the same irradiance on the surface of the capsule.The temporal and spatial evolution of the implosion targets was calculated using Multi-1D, a one-dimensional radiation hydrodynamics code. The emergent X-ray spectrum is calculated by post-processing from the time histories of the temperature and density profiles output by the Multi-1D code. We adjusted the laser absorption fraction to ensure neutron yield in accordance with OMEGA's 1D simulation results.It shows that the rapid increase of density and temperature at stagnation time develops a 150 ps point X-ray flash with approximately 100 μm size. The dominant X-ray emission comes from the inner layer of the dense compressed shell, which should be the focus of future efforts to improve the X-ray emission. Softer X-rays below 30 keV carry most of the energy due to the exponentially decaying spectral profile of implosion X-ray source. Opacity of the dense compressed shell plasma can markedly reduce the very softer X-ray emission of 1-3 keV. DT fusion reactions can enhance the share of harder X-rays above 30 keV greatly, while show negligible effect on the brightness of the implosion X-ray source. Thus higher-Z plastic target or glass target may be a better choice in generating the implosion X-ray source.
      通信作者: 胡广月, gyhu@ustc.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11105147,11375197,11175179,11275202)、中国科学院战略先导专项项目(批准号:XDB16)、强场激光物理国家重点实验室开放基金和科学挑战计划(批准号:JCKY2016212A505)资助的课题.
      Corresponding author: Hu Guang-Yue, gyhu@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11105147, 11375197, 11175179, 11275202), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB16), the Open Fund of the State Key Laboratory of High Field Laser Physics (SIOM), and the Science Challenge Project, China (Grant No. JCKY2016212A505).
    [1]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Hann S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [2]

    Drake R P 2006 High-Energy-Density Physics: Fundamental, Inertial Fusion and Experimental Astrophysics (New York: Springer Science & Business Media) pp237-266

    [3]

    Zhang J Y, Yang J M, Xu Y, Yang G H, Yan J, Meng G W, Ding Y N, Wang Y 2008 Acta Phys. Sin. 57 985 (in Chinese) [张继彦, 杨家敏, 许琰, 杨国洪, 颜君, 孟广为, 丁耀南, 汪艳 2008 物理学报 57 985]

    [4]

    Zhang J Y, Xu Y, Yang J M, Yang G H, Li H, Yuan Z, Zhao Y, Xiong G, Bao L H, Huang C W, Wu Z Q, Yan J, Ding Y K, Zhang B H, Zheng Z J 2001 Phys. Plasmas 18 113301

    [5]

    Zhang J Y, Li H, Zhao Y, Xiong G, Yuan Z, Zhang H Y, Yang G H, Yang J M, Liu S Y, Jiang S E, Ding Y K, Zhang B H, Zheng Z J, Xu Y, Meng X J, Yan J 2012 Phys. Plasmas 19 113302

    [6]

    Zhang X D, Zhang J Y, Zhao Y, Xiong G, Zhao B, Yang G H, Zheng J, Yang J M 2012 Phys. Plasmas 19 123301

    [7]

    Sawada H, Regan S P, Radha P B, Epstein R, Li D, Goncharov V N, Hu S X, Meyerhofer D D, Delettrez J A, Jaanimagi P A, Smalyuk V A, Boehly T R, Sangster T C, Yaakobi B, Mancini R C 2009 Phys. Plasmas 16 052702

    [8]

    Bailey J E, Rochau G A, Mancini R C, Iglesias C A, MacFarlane J J, Golovkin I E, Blancard C, Cosse P, Faussurier G 2009 Phys. Plasmas 16 058101

    [9]

    Bailey J E, Rochau G A, Iglesias C A, Abdallah Jr J, MacFarlane J J, Golovkin I, Wang P, Mancini R C, Lake P W, Moore T C, Bump M, Garcia O, Mazevet S 2007 Phys. Rev. Lett. 99 265002

    [10]

    Bailey J E, Rochau G A, Mancini R C, Iglesias C A, MacFarlane J J, Golovkin I E, Pain J C, Gilleron F, Blancard C, Cosse P, Faussurier G, Chandler G A, Nash T J, Nielsen D S, Lake P W 2008 Rev. Sci. Instrum. 79 113104

    [11]

    Hansen J F, Glendinning S G, Heeter R F, Brockington S J E 2008 Rev. Sci. Instrum. 79 013504

    [12]

    Remington B A, Allen P, Bringa E M, Hawreliak J, Ho D, Lorenz K T, Lorenzana H, McNaney J M, Meyers M A, Pollaine S W, Rosolankova K, Sadik B, Schneider M S, Swift D, Wark J, Yaakobi B 2006 Mater. Sci. Technol. 22 474

    [13]

    Moses E I, Boyd R N, Remington B A, Keane C J, Al-Ayat R 2009 Phys. Plasmas 16 041006

    [14]

    Eason R W, Bradley D K, Kilkenny J D, Greaves G N 1984 J. Phys. C 17 5067

    [15]

    Shiwai B A, Djaoui A, Hall T A, Tallents G J, Rose S J 1992 Laser Part. Beams 10 41

    [16]

    Yaakobi B, Marshall F J, Boehly T R, Town P R J, Meyerhofer D D 2003 J. Opt. Soc. Am. B 20 238

    [17]

    Yaakobi B, Meyerhofer D D, Boehly T R, Rehr J J, Remington B A, Allen P G, Pollaine S M, Albers R C 2004 Phys. Rev. Lett. 92 095504

    [18]

    Yaakobi B, Boehly T R, Meyerhofer D D, Collins T J B, Remington B A, Allen P G, Pollaine S M, Lorenzana H E, Eggert J H 2005 Phys. Rev. Lett. 95 075501

    [19]

    Maddox B R, Park H S, Remington B A, Chen C, Chen S, Prisbrey S T, Comley A, Back C A, Szabo C, Seely J F, Feldman U, Hudson L T, Seltzer S, Haugh M J, Ali Z 2011 Phys. Plasmas 18 056709

    [20]

    Hammer D 2008 JASON Report on DTRA National Ignition Facility(NIF) JSR-08-800

    [21]

    Zheng W G, Wei X F, Zhu Q H, Jing F, Hu D X, Su J Q, Zheng K X, Yuan X D, Zhou H, Dai W J, Zhou W, Wang F, Xu D P, Xie X D, Feng B, Peng Z T, Guo L F, Chen Y B, Zhang X J, Liu L Q, Lin D H, Dang Z, Xiang Y, Deng X W 2016 High Power Laser Science and Engineering 4 20

    [22]

    Boehly T R, Brown D L, Craxton R S, Keck R L, Knauer J P, Kelly J H, Kessler T J, Kumpan S A, Loucks S J, Letzring S A, Marshall F J, McCrory R L, Morse S F B, Seka W, Soures J M, Verdon C P 1997 Opt. Commun. 133 495

    [23]

    Tommasini R, Hatchett S P, Hey D S, Iglesias C, Izumi N, Koch J A, Landen O L, MacKinnon A J, Sorce C, Delettrez J A, Glebov V Y, Sangster T C, Stoeckl C 2011 Phys. Plasmas 18 056309

    [24]

    Stoeckl C, Chiritescu C, Delettrez J A, Epstein R, Glebov V Y, Harding D R, Keck R L, Loucks S J, Lund L D, McCrory R L, McKenty P M, Marshall F J, Meyerhofer D D, Morse S F B, Regan S P, Radha P B, Roberts S, Sangster T C, Seka W, Skupsky S, Smalyuk V A, Sorce C, Soures J M, Town R P J, Frenje J A, Li C K, Petrasso R D, Séguin F H, Fletcher K, Paladino S, Freeman C, Izumi N, Lerche R, Phillips T W 2002 Phys. Plasmas 9 2195

    [25]

    Ramis R, Schmalz R, Meyer-ter-Vehn J 1988 Comput. Phys. Commun. 49 475

    [26]

    Chung H K, Chen M H, Morgan W L, Ralchenko Y, Lee R W 2005 High Energy Density Physics 1 3

    [27]

    Chung H K, Morgan W L, Lee R W 2003 J. Quantit. Spectrosc. Radia. Transfer 81 107

    [28]

    Marshall F J, Craxton R S, Delettrez J A, Edgell D H, Elasky L M, Epstein R, Glebov V Y, Goncharov V N, Harding D R, Janezic R, Keck R L, Kilkenny J D, Knauer J P, Loucks S J, Lund L D, McCrory R L, McKenty P W, Meyerhofer D D, Radha P B, Regan S P, Sangster T C, Seka W, Smalyuk V A, Soures J M, Stoeckl C, Skupsky S 2005 Phys. Plasmas 12 056302

    [29]

    Atzeni S, Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion (Oxford: Oxford University Press) pp47-72

  • [1]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Hann S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [2]

    Drake R P 2006 High-Energy-Density Physics: Fundamental, Inertial Fusion and Experimental Astrophysics (New York: Springer Science & Business Media) pp237-266

    [3]

    Zhang J Y, Yang J M, Xu Y, Yang G H, Yan J, Meng G W, Ding Y N, Wang Y 2008 Acta Phys. Sin. 57 985 (in Chinese) [张继彦, 杨家敏, 许琰, 杨国洪, 颜君, 孟广为, 丁耀南, 汪艳 2008 物理学报 57 985]

    [4]

    Zhang J Y, Xu Y, Yang J M, Yang G H, Li H, Yuan Z, Zhao Y, Xiong G, Bao L H, Huang C W, Wu Z Q, Yan J, Ding Y K, Zhang B H, Zheng Z J 2001 Phys. Plasmas 18 113301

    [5]

    Zhang J Y, Li H, Zhao Y, Xiong G, Yuan Z, Zhang H Y, Yang G H, Yang J M, Liu S Y, Jiang S E, Ding Y K, Zhang B H, Zheng Z J, Xu Y, Meng X J, Yan J 2012 Phys. Plasmas 19 113302

    [6]

    Zhang X D, Zhang J Y, Zhao Y, Xiong G, Zhao B, Yang G H, Zheng J, Yang J M 2012 Phys. Plasmas 19 123301

    [7]

    Sawada H, Regan S P, Radha P B, Epstein R, Li D, Goncharov V N, Hu S X, Meyerhofer D D, Delettrez J A, Jaanimagi P A, Smalyuk V A, Boehly T R, Sangster T C, Yaakobi B, Mancini R C 2009 Phys. Plasmas 16 052702

    [8]

    Bailey J E, Rochau G A, Mancini R C, Iglesias C A, MacFarlane J J, Golovkin I E, Blancard C, Cosse P, Faussurier G 2009 Phys. Plasmas 16 058101

    [9]

    Bailey J E, Rochau G A, Iglesias C A, Abdallah Jr J, MacFarlane J J, Golovkin I, Wang P, Mancini R C, Lake P W, Moore T C, Bump M, Garcia O, Mazevet S 2007 Phys. Rev. Lett. 99 265002

    [10]

    Bailey J E, Rochau G A, Mancini R C, Iglesias C A, MacFarlane J J, Golovkin I E, Pain J C, Gilleron F, Blancard C, Cosse P, Faussurier G, Chandler G A, Nash T J, Nielsen D S, Lake P W 2008 Rev. Sci. Instrum. 79 113104

    [11]

    Hansen J F, Glendinning S G, Heeter R F, Brockington S J E 2008 Rev. Sci. Instrum. 79 013504

    [12]

    Remington B A, Allen P, Bringa E M, Hawreliak J, Ho D, Lorenz K T, Lorenzana H, McNaney J M, Meyers M A, Pollaine S W, Rosolankova K, Sadik B, Schneider M S, Swift D, Wark J, Yaakobi B 2006 Mater. Sci. Technol. 22 474

    [13]

    Moses E I, Boyd R N, Remington B A, Keane C J, Al-Ayat R 2009 Phys. Plasmas 16 041006

    [14]

    Eason R W, Bradley D K, Kilkenny J D, Greaves G N 1984 J. Phys. C 17 5067

    [15]

    Shiwai B A, Djaoui A, Hall T A, Tallents G J, Rose S J 1992 Laser Part. Beams 10 41

    [16]

    Yaakobi B, Marshall F J, Boehly T R, Town P R J, Meyerhofer D D 2003 J. Opt. Soc. Am. B 20 238

    [17]

    Yaakobi B, Meyerhofer D D, Boehly T R, Rehr J J, Remington B A, Allen P G, Pollaine S M, Albers R C 2004 Phys. Rev. Lett. 92 095504

    [18]

    Yaakobi B, Boehly T R, Meyerhofer D D, Collins T J B, Remington B A, Allen P G, Pollaine S M, Lorenzana H E, Eggert J H 2005 Phys. Rev. Lett. 95 075501

    [19]

    Maddox B R, Park H S, Remington B A, Chen C, Chen S, Prisbrey S T, Comley A, Back C A, Szabo C, Seely J F, Feldman U, Hudson L T, Seltzer S, Haugh M J, Ali Z 2011 Phys. Plasmas 18 056709

    [20]

    Hammer D 2008 JASON Report on DTRA National Ignition Facility(NIF) JSR-08-800

    [21]

    Zheng W G, Wei X F, Zhu Q H, Jing F, Hu D X, Su J Q, Zheng K X, Yuan X D, Zhou H, Dai W J, Zhou W, Wang F, Xu D P, Xie X D, Feng B, Peng Z T, Guo L F, Chen Y B, Zhang X J, Liu L Q, Lin D H, Dang Z, Xiang Y, Deng X W 2016 High Power Laser Science and Engineering 4 20

    [22]

    Boehly T R, Brown D L, Craxton R S, Keck R L, Knauer J P, Kelly J H, Kessler T J, Kumpan S A, Loucks S J, Letzring S A, Marshall F J, McCrory R L, Morse S F B, Seka W, Soures J M, Verdon C P 1997 Opt. Commun. 133 495

    [23]

    Tommasini R, Hatchett S P, Hey D S, Iglesias C, Izumi N, Koch J A, Landen O L, MacKinnon A J, Sorce C, Delettrez J A, Glebov V Y, Sangster T C, Stoeckl C 2011 Phys. Plasmas 18 056309

    [24]

    Stoeckl C, Chiritescu C, Delettrez J A, Epstein R, Glebov V Y, Harding D R, Keck R L, Loucks S J, Lund L D, McCrory R L, McKenty P M, Marshall F J, Meyerhofer D D, Morse S F B, Regan S P, Radha P B, Roberts S, Sangster T C, Seka W, Skupsky S, Smalyuk V A, Sorce C, Soures J M, Town R P J, Frenje J A, Li C K, Petrasso R D, Séguin F H, Fletcher K, Paladino S, Freeman C, Izumi N, Lerche R, Phillips T W 2002 Phys. Plasmas 9 2195

    [25]

    Ramis R, Schmalz R, Meyer-ter-Vehn J 1988 Comput. Phys. Commun. 49 475

    [26]

    Chung H K, Chen M H, Morgan W L, Ralchenko Y, Lee R W 2005 High Energy Density Physics 1 3

    [27]

    Chung H K, Morgan W L, Lee R W 2003 J. Quantit. Spectrosc. Radia. Transfer 81 107

    [28]

    Marshall F J, Craxton R S, Delettrez J A, Edgell D H, Elasky L M, Epstein R, Glebov V Y, Goncharov V N, Harding D R, Janezic R, Keck R L, Kilkenny J D, Knauer J P, Loucks S J, Lund L D, McCrory R L, McKenty P W, Meyerhofer D D, Radha P B, Regan S P, Sangster T C, Seka W, Smalyuk V A, Soures J M, Stoeckl C, Skupsky S 2005 Phys. Plasmas 12 056302

    [29]

    Atzeni S, Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion (Oxford: Oxford University Press) pp47-72

  • [1] 邹雄, 漆小波, 张涛先, 高章帆, 黄卫星. 惯性约束聚变靶丸内杂质气体抽空流洗过程的数值模拟. 物理学报, 2021, 70(7): 075207. doi: 10.7498/aps.70.20201491
    [2] 肖德龙, 戴自换, 孙顺凯, 丁宁, 张扬, 邬吉明, 尹丽, 束小建. Z箍缩动态黑腔驱动靶丸内爆动力学. 物理学报, 2018, 67(2): 025203. doi: 10.7498/aps.67.20171640
    [3] 晏骥, 张兴, 郑建华, 袁永腾, 康洞国, 葛峰骏, 陈黎, 宋仔峰, 袁铮, 蒋炜, 余波, 陈伯伦, 蒲昱东, 黄天晅. 氘氘-塑料靶丸变收缩比内爆物理实验研究. 物理学报, 2015, 64(12): 125203. doi: 10.7498/aps.64.125203
    [4] 乔秀梅, 郑无敌, 高耀明. 间接驱动内爆靶丸示踪元素Ar发射X光谱线的理论模拟研究. 物理学报, 2015, 64(4): 045201. doi: 10.7498/aps.64.045201
    [5] 黄建微, 王乃彦. 基于蒙特卡罗方法的NaI探测器效率刻度及其测量轫致辐射实验. 物理学报, 2014, 63(18): 180702. doi: 10.7498/aps.63.180702
    [6] 戚俊成, 叶琳琳, 陈荣昌, 谢红兰, 任玉琦, 杜国浩, 邓彪, 肖体乔. 第三代同步辐射光源X射线相干性测量研究. 物理学报, 2014, 63(10): 104202. doi: 10.7498/aps.63.104202
    [7] 晏骥, 郑建华, 陈黎, 胡昕, 黄天晅, 江少恩. 多点光源相衬成像法应用于内爆背光照相实验. 物理学报, 2013, 62(12): 125203. doi: 10.7498/aps.62.125203
    [8] 但加坤, 任晓东, 黄显宾, 张思群, 周少彤, 段书超, 欧阳凯, 蔡红春, 卫兵, 计策, 何安, 夏明鹤, 丰树平, 王勐, 谢卫平. Z箍缩内爆产生的电磁脉冲辐射. 物理学报, 2013, 62(24): 245201. doi: 10.7498/aps.62.245201
    [9] 余波, 陈伯伦, 侯立飞, 苏明, 黄天晅, 刘慎业. 化学气相沉积金刚石探测器测量辐射驱动内爆的硬X射线. 物理学报, 2013, 62(5): 058102. doi: 10.7498/aps.62.058102
    [10] 晏骥, 江少恩, 苏明, 巫顺超, 林稚伟. X射线相衬成像应用于惯性约束核聚变多层球壳靶丸检测. 物理学报, 2012, 61(6): 068703. doi: 10.7498/aps.61.068703
    [11] 董建军, 曹柱荣, 杨正华, 陈伯伦, 黄天暄, 邓博, 刘慎业, 江少恩, 丁永坤, 伊圣振, 穆宝忠. 辐射驱动内爆流线实验测量. 物理学报, 2012, 61(15): 155208. doi: 10.7498/aps.61.155208
    [12] 周少彤, 李军, 黄显宾, 蔡红春, 张思群, 李晶, 段书超, 周荣国. 阳加速器钛丝X箍缩光源辐射特性实验研究. 物理学报, 2012, 61(16): 165202. doi: 10.7498/aps.61.165202
    [13] 晏骥, 郑建华, 陈黎, 林稚伟, 江少恩. X射线相衬成像技术应用于高能量密度物理条件下内爆靶丸诊断. 物理学报, 2012, 61(14): 148701. doi: 10.7498/aps.61.148701
    [14] 江少恩, 缪文勇, 况龙钰. 神光Ⅱ与神光Ⅲ原型上的辐射驱动小收缩比内爆靶设计. 物理学报, 2011, 60(5): 055206. doi: 10.7498/aps.60.055206
    [15] 谢崇国, 安宇, 应崇福. 声致发光气泡内水蒸气的影响. 物理学报, 2003, 52(1): 102-108. doi: 10.7498/aps.52.102
    [16] 滕浩, 曹磊峰, 成金秀, 陈家斌, 杨向东, 刘忠礼, 郑志坚. 激光聚变爆推靶内爆区空间分布的测量. 物理学报, 2002, 51(4): 835-838. doi: 10.7498/aps.51.835
    [17] 黄天, 孙可煦, 郑志坚, 易荣清, 丁永坤, 丁耀南, 崔延莉, 唐道源. 软X射线辐射加热金盘靶的X射线再发射. 物理学报, 1998, 47(1): 40-46. doi: 10.7498/aps.47.40
    [18] 成金秀, 缪文勇, 陈晓峰, 唐道源, 丁耀南, 温天舒, 胡昕, 朱宗元. 腔靶X射线辐射特性实验研究. 物理学报, 1996, 45(3): 436-442. doi: 10.7498/aps.45.436
    [19] 林尊琪, 张燕珍, 毕无忌, 陆海鹤, 何兴法, 赵志文, 韦小春, 施阿英, 王笑琴, 林康春, 李家明, 董骐. 激光内爆靶的四分幅X射线阴影成像诊断实验和理论模拟. 物理学报, 1988, 37(1): 20-28. doi: 10.7498/aps.37.20
    [20] 常铁强. 等离子体中的轫致辐射. 物理学报, 1982, 31(9): 1152-1165. doi: 10.7498/aps.31.1152
计量
  • 文章访问数:  4232
  • PDF下载量:  190
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-09
  • 修回日期:  2017-04-05
  • 刊出日期:  2017-06-05

/

返回文章
返回