-
To improve the performance of existing guided-mode resonance (GMR) anti-counterfeiting grating, a tri-color shift device based on a one-dimensional (1D) singly periodic rectangular structure and ZnS film is reported. By turning the azimuths, the proposed device exhibits tri-color shifts of blue, green, and red for both TE and TM polarizations simultaneously. As the natural light can be considered as a superposition of TE and TM polarizations, in order to achieve the azimuth-tuned tri-color shifts of blue, green, and red, the wavebands and magnitudes of the reflection peaks for TE and TM polarizations should be designed at three azimuths, that is, at the first azimuth, high reflectivity in blue band and low reflectivity in green and red band should be reached; at the second azimuth, high reflectivity in green band and low reflectivity in blue and red band should be reached; at the third azimuth, high reflectivity in red band and low reflectivity in blue and green band should be reached. Considering these design goals, the evaluation function is established. By making the rigorous coupled wave analysis, the 0th reflectivity of the device can be numerically solved, which is relative to the incident light parameters (, , , ), the structure parameters (f, T, dg, dc), as well as the refractive indices of all the regions (ni, nc, ns). There is no analytical relationship between these parameters and the 0th reflectivity. So genetic algorithm is used to optimize the evaluation function, and then the optimal parameters of the tri-color shift device are obtained. When T=431.5 nm, dg=124.2 nm, dc=13.1 nm, f=0.5, and =45, at azimuth angle 0, natural light has reflection peaks at 468 nm and 442 nm; at azimuth angle 58, natural light has reflection peaks at 557 nm and 521 nm; at azimuth angle 90, natural light has reflection peaks at 690 nm, 673 nm, 650 nm and 644 nm. As a result, the device exhibits blue, green and red color responses at 0, 58 and 90 azimuth, respectively. The research results are explained in physics. Furthermore, the influences of key parameters on the reflection peaks are investigated. It is found that the reflection peaks of blue, green and red light are red-shifted with the increase of device period, groove depth, coating thickness and the decrease of incident angle. When the period, depth, thickness, and the incident angle are changed by 4.6% ( 20 nm), 27.4% ( 34 nm), 100% ( 13.1 nm), and 11.1% ( 5) with respect to the original designs, respectively, the device can well keep the color-shift effects of blue, green and red. The results above are meaningful in the designing, manufacturing and testing of the device. Compared with the existing GMR anti-counterfeiting grating, the tri-color shift device has high anti-counterfeit and appreciative value because of the harder designing and richer visual effect. Moreover, the 1D simple periodical structure is good for the manufacture of the high-precision master masks, and the device can be massively produced at low cost by the traditional embossing and evaporating technique in the laser holography industry. This tri-color shift device breaks through the limit of bi-color shifting technology, and may have great applications in the field of the optically variable image security.
-
Keywords:
- subwavelength /
- binary rectangular single-period structure /
- tri-color shift device /
- anti-counterfeiting
[1] Gale M T, Knop K, Morf R 1990 SPIE 1210 83
[2] Renesse R L V 1998 Optical Document Security (3rd Ed.) (London: Artech House) pp212-218
[3] Wu M L, Hsu C L, Lan H C, Huang H I, Liu Y C, Tu Z R, Lee C C, Lin J S, Su C C, Chang J Y 2007 Opt. Lett. 32 1614
[4] Ye Y, Chen L S 2008 Acta Opt. Sin. 28 2255 (in Chinese) [叶燕, 陈林森 2008 光学学报 28 2255]
[5] Chen Y L, Liu W X 2011 Opt. Eng. 50 048001
[6] Chen Y L, Liu W X, Cai S Y 2012 J. Opt. Technol. 79 758
[7] Uddin M J, Magnusson R 2013 Opt. Express 21 12495
[8] Uddin M J, Khaleque T, Magnusson R 2014 Opt. Express 22 12307
[9] Chen Y L, Liu W X 2012 Opt. Lett. 37 4
[10] Pesala B, Madhusudan M 2013 SPIE 8633 86330D
[11] Uddin M J, Magnusson R 2012 IEEE Photon. Technol. Lett. 24 1552
[12] Magnusson R, Wang S S 1992 Appl. Phys. Lett. 61 1022
[13] Wang S S, Magnusson R 1993 Appl. Opt. 32 2606
[14] Fehrembach A L, Sentenac A 2005 Appl. Phys. Lett. 86 121105
[15] Boyko O, Lemarchand F, Talneau A, Fehrembach A L, Sentenac A 2009 J. Opt. Soc. Am. A 26 676
[16] Hu X H, Gong Ke, Sun T Y, Wu D M 2010 Chin. Phys. Lett. 27 74211
[17] Fehrembach A L, Yu K C S, Monmayrant A, Arguel P, Sentenac A, Oliver G L 2011 Opt. Lett. 36 1662
[18] Hong L, Yang C Y, Shen W D, Ye H, Zhang Y G, Liu X 2013 Acta Phys. Sin. 62 064204 (in Chinese) [洪亮, 杨陈楹, 沈伟东, 叶辉, 章岳光, 刘旭 2013 物理学报 62 064204]
[19] Xu P, Hong C Q, Cheng G X, Zhou L, Sun Z L 2015 Opt. Express 23 6773
[20] Xu P, Huang Y Y, Su Z J, Zhang X L, Luo T Z, Peng W D 2015 Opt. Express 23 4887
[21] Huang H X, Ruan S C, Yang T, Xu P 2015 Nano-Micro Lett. 7 177
[22] Huang H X, Xu P, Ruan S C, Yang T, Yuan X, Huang Y Y 2015 Acta Phys. Sin. 64 154212 (in Chinese) [黄海漩, 徐平, 阮双琛, 杨拓, 袁霞, 黄燕燕 2015 物理学报 64 154212]
[23] Xu P, Huang Y Y, Zhang X L, Huang J F, Li B B, Ye E, Duan S F, Su Z J 2013 Opt. Express 21 20159
[24] Xu P, Huang H X, Wang K, Ruan S C, Yang J, Wan L L, Chen X X, Liu J Y 2007 Opt. Express 15 809
[25] Xu P, Yuan X, Huang H X, Yang T, Huang Y Y, Zhu T F, Tang S T, Peng W D 2016 Nanoscale Res. Lett. 11 485
[26] Xu P, Yuan X, Huang H X, Yang T 2014 CN Patent 2014103957471 (in Chinese) [徐平, 袁霞, 黄海漩, 杨拓 2014 中国发明专利 2014103957471]
[27] Wang Q, Zhang D W, Xu B L, Huang Y S, Tao C X, Wang C F, Li B C, Ni Z J, Zhuang S L 2011 Opt. Lett. 36 4698
[28] Moharam M G, Grann E B, Pommet D A, Gaylord T K 1995 J. Opt. Soc. Am. A 12 1068
[29] Golubenko G A, Svakhin A S, Sychugov V A 1985 Quantum Electron 15 886
-
[1] Gale M T, Knop K, Morf R 1990 SPIE 1210 83
[2] Renesse R L V 1998 Optical Document Security (3rd Ed.) (London: Artech House) pp212-218
[3] Wu M L, Hsu C L, Lan H C, Huang H I, Liu Y C, Tu Z R, Lee C C, Lin J S, Su C C, Chang J Y 2007 Opt. Lett. 32 1614
[4] Ye Y, Chen L S 2008 Acta Opt. Sin. 28 2255 (in Chinese) [叶燕, 陈林森 2008 光学学报 28 2255]
[5] Chen Y L, Liu W X 2011 Opt. Eng. 50 048001
[6] Chen Y L, Liu W X, Cai S Y 2012 J. Opt. Technol. 79 758
[7] Uddin M J, Magnusson R 2013 Opt. Express 21 12495
[8] Uddin M J, Khaleque T, Magnusson R 2014 Opt. Express 22 12307
[9] Chen Y L, Liu W X 2012 Opt. Lett. 37 4
[10] Pesala B, Madhusudan M 2013 SPIE 8633 86330D
[11] Uddin M J, Magnusson R 2012 IEEE Photon. Technol. Lett. 24 1552
[12] Magnusson R, Wang S S 1992 Appl. Phys. Lett. 61 1022
[13] Wang S S, Magnusson R 1993 Appl. Opt. 32 2606
[14] Fehrembach A L, Sentenac A 2005 Appl. Phys. Lett. 86 121105
[15] Boyko O, Lemarchand F, Talneau A, Fehrembach A L, Sentenac A 2009 J. Opt. Soc. Am. A 26 676
[16] Hu X H, Gong Ke, Sun T Y, Wu D M 2010 Chin. Phys. Lett. 27 74211
[17] Fehrembach A L, Yu K C S, Monmayrant A, Arguel P, Sentenac A, Oliver G L 2011 Opt. Lett. 36 1662
[18] Hong L, Yang C Y, Shen W D, Ye H, Zhang Y G, Liu X 2013 Acta Phys. Sin. 62 064204 (in Chinese) [洪亮, 杨陈楹, 沈伟东, 叶辉, 章岳光, 刘旭 2013 物理学报 62 064204]
[19] Xu P, Hong C Q, Cheng G X, Zhou L, Sun Z L 2015 Opt. Express 23 6773
[20] Xu P, Huang Y Y, Su Z J, Zhang X L, Luo T Z, Peng W D 2015 Opt. Express 23 4887
[21] Huang H X, Ruan S C, Yang T, Xu P 2015 Nano-Micro Lett. 7 177
[22] Huang H X, Xu P, Ruan S C, Yang T, Yuan X, Huang Y Y 2015 Acta Phys. Sin. 64 154212 (in Chinese) [黄海漩, 徐平, 阮双琛, 杨拓, 袁霞, 黄燕燕 2015 物理学报 64 154212]
[23] Xu P, Huang Y Y, Zhang X L, Huang J F, Li B B, Ye E, Duan S F, Su Z J 2013 Opt. Express 21 20159
[24] Xu P, Huang H X, Wang K, Ruan S C, Yang J, Wan L L, Chen X X, Liu J Y 2007 Opt. Express 15 809
[25] Xu P, Yuan X, Huang H X, Yang T, Huang Y Y, Zhu T F, Tang S T, Peng W D 2016 Nanoscale Res. Lett. 11 485
[26] Xu P, Yuan X, Huang H X, Yang T 2014 CN Patent 2014103957471 (in Chinese) [徐平, 袁霞, 黄海漩, 杨拓 2014 中国发明专利 2014103957471]
[27] Wang Q, Zhang D W, Xu B L, Huang Y S, Tao C X, Wang C F, Li B C, Ni Z J, Zhuang S L 2011 Opt. Lett. 36 4698
[28] Moharam M G, Grann E B, Pommet D A, Gaylord T K 1995 J. Opt. Soc. Am. A 12 1068
[29] Golubenko G A, Svakhin A S, Sychugov V A 1985 Quantum Electron 15 886
计量
- 文章访问数: 5637
- PDF下载量: 142
- 被引次数: 0