搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光纤锥和纤芯失配的Mach-Zehnder干涉湿度传感器

程君妮

引用本文:
Citation:

基于光纤锥和纤芯失配的Mach-Zehnder干涉湿度传感器

程君妮

Mach-Zehnder interferometer based on fiber taper and fiber core mismatch for humidity sensing

Cheng Jun-Ni
PDF
导出引用
  • 介绍了一种简单且灵敏度较高的Mach-Zehnder干涉湿度传感器.将单模光纤和多模光纤渐变熔接光纤锥,色散补偿光纤被熔接在两个多模渐变光纤之间,形成了单模光纤-光纤锥-多模渐变光纤-色散补偿光纤-多模渐变光纤-光纤锥-单模光纤结构的传感器.光纤锥起到了增加包层模能量的作用,两个多模渐变光纤节点作为光耦合器,从而形成光纤Mach-Zehnder干涉仪.外界环境湿度的变化,将使得传感器透射谱能量发生变化,通过测量干涉谱波峰峰值能量实现对湿度的测量.实验结果表明干涉谱波峰峰值能量与环境湿度之间存在良好的线性关系.当环境湿度在35% RH85% RH范围内变化,一段由20 mm色散补偿光纤组成的传感器,其灵敏度为-0.0668 dB/% RH,相关度为0.995.该传感器结构紧凑、尺寸小、制造工艺简单,这使其可以被广泛用于湿度测量.
    A simple and high sensitivity optical fiber relative humidity (RH) sensor based on Mach-Zehnder interferometer (MZI) is proposed and demonstrated in this paper. A single-mode fiber and a graded-index multimode fiber are connected by a fiber taper to form a section. Then an uncoated dispersion compensation fiber is sandwiched between two short sections of the graded-index multimode fiber.Therefore, a sensing structure is set up as a single-mode fiber-taper fiber-graded-index multimode fiber-dispersion compensation fiber-graded-index multimode fiber-taper laser-single-mode fiber. The taper fiber is used to augment the energy of the cladding mode. The two nodes of the graded-index multimode fiber can be looked as a mode coupler. Thus an MZI is constructed. Since the external RH change can make the transmission spectrum energy changed, we can obtain the RH by detecting the peak energy variation of the interference pattern induced by the evanescent-field interaction. The experimental results show that the peak energy changes linearly with surrounding relative humidity. Under the condition of 35%Rh-85%RH, the sensitivity of the sensor with a 20 mm dispersion compensation fiber is -0.0668 dB/%RH and the linearity is 0.995. Moreover, temperature response characteristics are investigated. Experimental results suggest that the transmission spectrum energy of the sensor is insensitive to temperature. With temperature increasing, the transmission spectrum presents obviously a red-shift, yet the peak energy of the monitoring point barely moves, which demonstrates its potential for measuring simultaneously RH and temperature. The proposed sensor has a small size and simple manufacturing process, which can make it widely used to measure RH.
      通信作者: 程君妮, jnchengylu@163.com
    • 基金项目: 陕西省榆林科学技术局产学研基金(批准号:2015cxy-22)和陕西省榆林学院校内项目(批准号:JG-1527)资助的课题.
      Corresponding author: Cheng Jun-Ni, jnchengylu@163.com
    • Funds: Project supported by the Research Foundation of Science and Technology Board of Yulin, Shaanxi, China (Grant No. 2015cxy-22) and the Fundamental Research Funds for Yulin University, China (Grant No. JG-1527).
    [1]

    Kolpakov S A, Gordon N T, Mou C B, Zhou K M 2014 Sensors 14 3986

    [2]

    Xu W, Huang W B, Huang X G, Yu C Y 2013 Opt. Fiber Technol. 19 583

    [3]

    Xie W J, Yang M, Cheng Y, Li D, Zhang Y, Zhuang Z 2014 Opt. Fiber Technol. 20 314

    [4]

    Sun H, Zhang X, Yuan L, Zhou L, Qiao X, Hu M 2014 IEEE Sens. J. 15 2891

    [5]

    Su D, Qiao X G, Rong Q Z, Sun H, Zhang J, Bai Z Y, Du Y Y, Feng D Y, Wang Y P, Hu M L, Feng Z Y 2014 Opt. Commun. 311 107

    [6]

    Lin Y, Gong Y, Wu Y, Wu H 2015 Photon. Sens. 5 60

    [7]

    Kronenberg P, Rastogi P K, Giaccari P, Limberger H G 2002 Opt. Lett. 27 1385

    [8]

    Shao M, Qiao X, Fu H, Zhao N, Liu Q, Gao H 2013 IEEE Sens. J. 13 2026

    [9]

    Lokman A, Arof H, Harun S W, Harith Z, Rafaie H A, Nor R M 2016 IEEE Sens. J. 16 312

    [10]

    Yu X J, Zhang J T, Chen X F, Liu S C 2014 Adv. Mater. Res. 981 616

    [11]

    Shao M, Qiao X, Fu H W 2013 IEEE Sens. J. 13 2026

    [12]

    Mather J, Semenova Y, Rajan G, Farrell G 2010 Electron. Lett. 46 1341

    [13]

    Zhang Z F, Tao X M 2012 J. Lightwave Technol. 30 841

    [14]

    Liu H F, Miao Y P, Liu B, Lin W, Zhang H, Song B B, Huang M G, Lin L 2015 IEEE Sens. J. 15 3424

    [15]

    Mathew J, Semenova Y, Farrell G 2012 IEEE J. Sel. Top. Quantum Electron. 18 1553

    [16]

    Zhang X K, Ye X Q, Chen Z D 2011 Acta Opt. Sin. 31 33 (in Chinese)[张小康, 叶晓靖, 陈志东 2011 光学学报 31 33]

    [17]

    Zhang Y S, Qiao X G, Shao M, Fu H W, Zhao N 2015 Acta Photon. Sin. 44 115 (in Chinese)[张芸山, 乔学光, 邵敏, 傅海威, 李辉栋, 赵娜 2015 光子学报 44 115]

    [18]

    Yeo T L, Sun T, Grattan K T V, Parry D, Lade R, Powell B D 2005 IEEE Sens. J. 5 1082

    [19]

    Wu Q, Semenova Y L, Mathew J 2011 Opt. Lett. 36 1752

    [20]

    Shao M, Qiao X G, Fu H W, Li H D, Zhao J L, Li Y A 2014 Opt. Laser Technol. 52 86

    [21]

    Liu N, Hu M L, Sun H, Gang T T, Yang Z H, Rong Q Z, Qiao X G 2016 Opt. Commun. 367 1

    [22]

    Yan X, Fu H W, Li H D, Qiao X G 2016 Chin. Opt. Lett. 14 030603

    [23]

    Huan X F, Sheng D R, Cen K F, Zhou H 2007 Sensors Actuat. B: Chem. 127 518

  • [1]

    Kolpakov S A, Gordon N T, Mou C B, Zhou K M 2014 Sensors 14 3986

    [2]

    Xu W, Huang W B, Huang X G, Yu C Y 2013 Opt. Fiber Technol. 19 583

    [3]

    Xie W J, Yang M, Cheng Y, Li D, Zhang Y, Zhuang Z 2014 Opt. Fiber Technol. 20 314

    [4]

    Sun H, Zhang X, Yuan L, Zhou L, Qiao X, Hu M 2014 IEEE Sens. J. 15 2891

    [5]

    Su D, Qiao X G, Rong Q Z, Sun H, Zhang J, Bai Z Y, Du Y Y, Feng D Y, Wang Y P, Hu M L, Feng Z Y 2014 Opt. Commun. 311 107

    [6]

    Lin Y, Gong Y, Wu Y, Wu H 2015 Photon. Sens. 5 60

    [7]

    Kronenberg P, Rastogi P K, Giaccari P, Limberger H G 2002 Opt. Lett. 27 1385

    [8]

    Shao M, Qiao X, Fu H, Zhao N, Liu Q, Gao H 2013 IEEE Sens. J. 13 2026

    [9]

    Lokman A, Arof H, Harun S W, Harith Z, Rafaie H A, Nor R M 2016 IEEE Sens. J. 16 312

    [10]

    Yu X J, Zhang J T, Chen X F, Liu S C 2014 Adv. Mater. Res. 981 616

    [11]

    Shao M, Qiao X, Fu H W 2013 IEEE Sens. J. 13 2026

    [12]

    Mather J, Semenova Y, Rajan G, Farrell G 2010 Electron. Lett. 46 1341

    [13]

    Zhang Z F, Tao X M 2012 J. Lightwave Technol. 30 841

    [14]

    Liu H F, Miao Y P, Liu B, Lin W, Zhang H, Song B B, Huang M G, Lin L 2015 IEEE Sens. J. 15 3424

    [15]

    Mathew J, Semenova Y, Farrell G 2012 IEEE J. Sel. Top. Quantum Electron. 18 1553

    [16]

    Zhang X K, Ye X Q, Chen Z D 2011 Acta Opt. Sin. 31 33 (in Chinese)[张小康, 叶晓靖, 陈志东 2011 光学学报 31 33]

    [17]

    Zhang Y S, Qiao X G, Shao M, Fu H W, Zhao N 2015 Acta Photon. Sin. 44 115 (in Chinese)[张芸山, 乔学光, 邵敏, 傅海威, 李辉栋, 赵娜 2015 光子学报 44 115]

    [18]

    Yeo T L, Sun T, Grattan K T V, Parry D, Lade R, Powell B D 2005 IEEE Sens. J. 5 1082

    [19]

    Wu Q, Semenova Y L, Mathew J 2011 Opt. Lett. 36 1752

    [20]

    Shao M, Qiao X G, Fu H W, Li H D, Zhao J L, Li Y A 2014 Opt. Laser Technol. 52 86

    [21]

    Liu N, Hu M L, Sun H, Gang T T, Yang Z H, Rong Q Z, Qiao X G 2016 Opt. Commun. 367 1

    [22]

    Yan X, Fu H W, Li H D, Qiao X G 2016 Chin. Opt. Lett. 14 030603

    [23]

    Huan X F, Sheng D R, Cen K F, Zhou H 2007 Sensors Actuat. B: Chem. 127 518

  • [1] 李建宇, 董忠级, 张吉宏, 史雯慧, 郑加金, 韦玮. 具有温度自补偿的保偏光纤布拉格光栅多参量传感器的设计与制备. 物理学报, 2023, 72(14): 144206. doi: 10.7498/aps.72.20230478
    [2] 孙家程, 王婷婷, 戴洋, 常建华, 柯炜. 基于无芯光纤的多参数测量传感器. 物理学报, 2021, 70(6): 064202. doi: 10.7498/aps.70.20201474
    [3] 肖士妍, 贾大功, 聂安然, 余辉, 吉喆, 张红霞, 刘铁根. 开放式多通道多芯少模光纤表面等离子体共振生物传感器. 物理学报, 2020, 69(13): 137802. doi: 10.7498/aps.69.20200353
    [4] 马天兵, 訾保威, 郭永存, 凌六一, 黄友锐, 贾晓芬. 基于拟合衰减差自补偿的分布式光纤温度传感器. 物理学报, 2020, 69(3): 030701. doi: 10.7498/aps.69.20191456
    [5] 傅双双, 骆顺龙, 孙源. 相干与信息守恒及其在Mach-Zehnder干涉中的应用. 物理学报, 2019, 68(3): 030301. doi: 10.7498/aps.68.20181778
    [6] 杨易, 徐贲, 刘亚铭, 李萍, 王东宁, 赵春柳. 基于游标效应的增敏型光纤法布里-珀罗干涉仪温度传感器. 物理学报, 2017, 66(9): 094205. doi: 10.7498/aps.66.094205
    [7] 李政颖, 周磊, 孙文丰, 李子墨, 王加琪, 郭会勇, 王洪海. 基于色散效应的光纤光栅高速高精度解调方法研究. 物理学报, 2017, 66(1): 014206. doi: 10.7498/aps.66.014206
    [8] 许新科, 刘国栋, 刘炳国, 陈凤东, 庄志涛, 甘雨. 基于光纤色散相位补偿的高分辨率激光频率扫描干涉测量研究. 物理学报, 2015, 64(21): 219501. doi: 10.7498/aps.64.219501
    [9] 谭林秋, 华灯鑫, 汪丽, 高飞, 狄慧鸽. Mach-Zehnder干涉仪条纹成像多普勒激光雷达风速反演及视场展宽技术. 物理学报, 2014, 63(22): 224205. doi: 10.7498/aps.63.224205
    [10] 冒晓莉, 肖韶荣, 刘清惓, 李敏, 张加宏. 探空湿度测量太阳辐射误差修正流体动力学研究. 物理学报, 2014, 63(14): 144701. doi: 10.7498/aps.63.144701
    [11] 邓芳明, 何怡刚, 佐磊, 李兵, 吴可汗. 基于无源超高频射频识别标签的湿度传感器设计. 物理学报, 2014, 63(18): 188402. doi: 10.7498/aps.63.188402
    [12] 杨珅, 荣强周, 孙浩, 张菁, 梁磊, 徐琴芳, 詹苏昌, 杜彦英, 冯定一, 乔学光, 忽满利. 基于Michelson干涉仪的高灵敏度光纤高温探针传感器. 物理学报, 2013, 62(8): 084218. doi: 10.7498/aps.62.084218
    [13] 李辉栋, 傅海威, 邵敏, 赵娜, 乔学光, 刘颖刚, 李岩, 闫旭. 基于光纤气泡和纤芯失配的Mach-Zehnder干涉液体折射率传感器. 物理学报, 2013, 62(21): 214209. doi: 10.7498/aps.62.214209
    [14] 殷丽梅, 张伟刚, 薛晓琳, 白志勇, 魏石磊. 飞秒激光刻蚀非平行壁光纤微腔Mach-Zehnder干涉仪特性及其流体传感研究. 物理学报, 2012, 61(17): 170701. doi: 10.7498/aps.61.170701
    [15] 齐晓庆, 高春清. 螺旋相位光束轨道角动量态测量的实验研究. 物理学报, 2011, 60(1): 014208. doi: 10.7498/aps.60.014208
    [16] 郑力明, 王发强, 刘颂豪. 光声互作用模型中的Pancharatnam相位. 物理学报, 2009, 58(5): 2884-2888. doi: 10.7498/aps.58.2884
    [17] 商娅娜, 王 东, 闫智辉, 王文哲, 贾晓军, 彭堃墀. 利用非平衡光纤Mach-Zehnder干涉仪探测频率非简并纠缠态光场. 物理学报, 2008, 57(6): 3514-3518. doi: 10.7498/aps.57.3514
    [18] 郭文刚, 杨秀峰, 罗绍均, 李勇男, 涂成厚, 吕福云, 王宏杰, 李恩邦, 吕 超. 基于激光瞬态特性的气体浓度光纤传感器. 物理学报, 2007, 56(1): 308-312. doi: 10.7498/aps.56.308
    [19] 谭中伟, 曹继红, 陈 勇, 刘 艳, 宁提纲, 简水生. 低串扰的多波长光纤光栅色散补偿器. 物理学报, 2007, 56(1): 274-279. doi: 10.7498/aps.56.274
    [20] 郑无敌, 张国平, 王 琛, 孙今人, 方智恒, 顾 援, 傅思祖. 用X射线激光M-Z干涉仪诊断点聚焦CH等离子体电子密度. 物理学报, 2007, 56(7): 3984-3989. doi: 10.7498/aps.56.3984
计量
  • 文章访问数:  6711
  • PDF下载量:  402
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-21
  • 修回日期:  2017-08-17
  • 刊出日期:  2019-01-20

/

返回文章
返回