搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第一性原理研究Zr的掺杂对Xe在UO2中溶解能力的影响

张仲 王欢 王开元 安欢 刘彪 伍建春 邹宇

引用本文:
Citation:

第一性原理研究Zr的掺杂对Xe在UO2中溶解能力的影响

张仲, 王欢, 王开元, 安欢, 刘彪, 伍建春, 邹宇

Influence of Zr doping on solubility of Xe in UO2: A first-principle study

Zhang Zhong, Wang Huan, Wang Kai-Yuan, An Huan, Liu Biao, Wu Jian-Chun, Zou Yu
PDF
导出引用
  • Zr既是反应堆中核燃料组件的包壳材料,也是核燃料UO2的一种裂变产物,不可避免地会掺杂到UO2中,对其性质等产生一定的影响.本文通过第一性原理密度泛函理论计算,研究了Zr掺杂所引起的Xe在UO2中溶解能力的变化.首先应用引入Hubbard U修正的广义梯度近似密度泛函计算了U,O间隙和空位缺陷的形成能,结果与文献值符合,验证了计算方法的可靠性.在此基础上对Zr掺杂后空位缺陷的形成能及Xe吸附到空位缺陷所需的结合能的变化情况进行了研究.结果表明,Zr的掺杂会增加空位缺陷的形成能,减小大部分Xe吸附的结合能,且空位缺陷形成能的变化量普遍更大,从而在整体上增加了Xe在UO2中的溶解能.说明在UO2中,Zr掺杂主要是通过增加缺陷的形成难度而减弱了Xe在其中的溶解能力.
    As a major fuel of the light-water reactors, UO2 has excellent properties such as high melting point, good radiation resistance, corrosion resistance, compatibility with cladding materials, and strong ability to tolerate fission gas. The Zr atoms are inevitably introduced into UO2 lattice during the operation of a nuclear reactor, which can affect the solubility of Xe in the UO2. In this paper, we calculate the formation energy of vacancy defect and the binding energy of Xe in vacancy of Zr doped UO2. The calculations presented here are based on density functional first-principle and projector augmented-wave method. A plane-wave basis set with a cutoff energy of 400 eV is used. The generalized gradient approximation refined by Perdew, Burke and Ernxerhof is employed for determining the exchange and correlation energy. Hubbard U term is used for considering the f-electron localization. Brillouin zone is set to be within 555 k point mesh generated by the Monkhorst-Pack scheme. The self-consistent convergence of total energy is 110-4 eV/atom. The calculations are performed in a 222 supercell. In order to verify the calculating process, the formation energies of U and O point defects are compared with those in the literature. Then the influence of Zr doping in the UO2 on the solubility of Xe in the UO2 is studied. The results show that the ability to form the vacancy defects is different in the U-rich and O-rich environment of UO2. The vacancy defects in UO2 are more likely to form in O-rich UO2. The Zr doping will lead to the increasing of the formation energies of defects in both cases. The Zr doping will also change the binding energy of Xe in void. For all the systems studied, only the binding energy of Xe adsorbed to the void consisting of four point defects increases, while the rest decrease. The solution energy, equaling the sum of the binding energy of Xe and the vacancy formation energy, will increase after doping Zr, because the decrement in binding energy is generally less than the increment in vacancy formation energy. In summary, the presence of Zr will weaken the solubility of Xe in UO2, which is mainly due to the hindering of vacancy defects from forming. This result has a certain value in studying the dissolution of fission product Xe after a small amount of Zr has entered into the UO2 fuel in nuclear reactor.
      Corresponding author: Wu Jian-Chun, jcwu@scu.edu.cn;zouyu@scu.edu.cn ; Zou Yu, jcwu@scu.edu.cn;zouyu@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11405111, 11205107).
    [1]

    Wang H, Yin C G, Liu J H 2013 J. Alloys Compd. 579 305

    [2]

    Song J H, Park I K, Shin Y S, Kim J H, Hong S W, Min B T, Kim H D 2003 Nucl. Eng. Des. 222 1

    [3]

    Lei Y L, Huang H W, Yu C, Yang J, Liu Y J 2014 J. Mater. Sci. Eng. 32 126 (in Chinese) [雷艳丽, 黄华伟, 喻冲, 杨静, 刘艳军 2014 材料科学与工程学报 32 126]

    [4]

    Matzke H, Turos A, Linker G 1994 Nucl. Instrum. Methods Phys. Res. Sect. B 91 294

    [5]

    Brutzel L V, Rarivomanantsoa M 2006 J. Nucl. Mater. 358 209

    [6]

    Martin G, Garcia P, Brutzel L V, Dorado B, Maillard S 2011 Nucl. Instrum. Methods Phys. Res. Sect. B 269 1727

    [7]

    Xing Z H, Ying S H 2000 Nucl. Power Eng. 21 560 (in Chinese) [邢忠虎, 应诗浩 2000 核动力工程 21 560]

    [8]

    Yun Y, Kim H, Kim H, Park K 2008 J. Nucl. Mater. 378 40

    [9]

    Andersson D A, Uberuaga B P, Nerikar P V, Unal C, Stanek C R 2011 Phys. Rev. B 84 2989

    [10]

    Andersson A D, Perriot R T, Pastore G, Tonks M R, Cooper M W, Liu X Y, Goyal A, Uberuaga B P, Stanek C R https://www.osti.gov/scitech/biblio/1291258/[2017-8-9]

    [11]

    Kulkarni N K, Krishnan K, Kasar U M, Rakshit S K, Sali S K, Aggarwal S K 2009 J. Nucl. Mater. 384 81

    [12]

    Yang C, Zhang X 2004 Mater. Sci. Eng. A 372 287

    [13]

    Lan J H, Wang L, Li S, Yuan L Y, Feng Y X, Sun W, Zhao Y L, Chai Z F, Shi W Q 2013 J. Appl. Phys. 113 183514

    [14]

    Yu J G, Devanathan R, Weber W J 2009 J. Phys.:Condens. Matter 21 435401

    [15]

    Grimes R W, Catlow C R A 1991 Philos. Trans. Phys. Sci. Eng. 335 609

    [16]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [17]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [18]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [19]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998 Phys. Rev. B 57 1505

    [20]

    Vathonne E, Wiktor J, Freyss M, Jomard G, Bertolus M 2014 J. Phys.:Condens. Matter 26 325501

    [21]

    Dorado B, Amadon B, Freyss M, Bertolus M 2009 Phys. Rev. B 79 235125

    [22]

    Dorado B, Jomard G, Freyss M, Bertolus M 2010 Phys. Rev. B 82 035114

    [23]

    Sinnott S B, Uberuaga B P 2014 Am. Ceram. Soc. Bull. 93 28

    [24]

    Ngayamhappy R, Krack M, Pautz A 2015 J. Phys.:Condens. Matter 27 455401

    [25]

    Hong M, Phillpot S R, Lee C W, Nerikar P, Uberuaga B P, Stanek C R, Sinnott S B 2012 Phys. Rev. B 85 144110

  • [1]

    Wang H, Yin C G, Liu J H 2013 J. Alloys Compd. 579 305

    [2]

    Song J H, Park I K, Shin Y S, Kim J H, Hong S W, Min B T, Kim H D 2003 Nucl. Eng. Des. 222 1

    [3]

    Lei Y L, Huang H W, Yu C, Yang J, Liu Y J 2014 J. Mater. Sci. Eng. 32 126 (in Chinese) [雷艳丽, 黄华伟, 喻冲, 杨静, 刘艳军 2014 材料科学与工程学报 32 126]

    [4]

    Matzke H, Turos A, Linker G 1994 Nucl. Instrum. Methods Phys. Res. Sect. B 91 294

    [5]

    Brutzel L V, Rarivomanantsoa M 2006 J. Nucl. Mater. 358 209

    [6]

    Martin G, Garcia P, Brutzel L V, Dorado B, Maillard S 2011 Nucl. Instrum. Methods Phys. Res. Sect. B 269 1727

    [7]

    Xing Z H, Ying S H 2000 Nucl. Power Eng. 21 560 (in Chinese) [邢忠虎, 应诗浩 2000 核动力工程 21 560]

    [8]

    Yun Y, Kim H, Kim H, Park K 2008 J. Nucl. Mater. 378 40

    [9]

    Andersson D A, Uberuaga B P, Nerikar P V, Unal C, Stanek C R 2011 Phys. Rev. B 84 2989

    [10]

    Andersson A D, Perriot R T, Pastore G, Tonks M R, Cooper M W, Liu X Y, Goyal A, Uberuaga B P, Stanek C R https://www.osti.gov/scitech/biblio/1291258/[2017-8-9]

    [11]

    Kulkarni N K, Krishnan K, Kasar U M, Rakshit S K, Sali S K, Aggarwal S K 2009 J. Nucl. Mater. 384 81

    [12]

    Yang C, Zhang X 2004 Mater. Sci. Eng. A 372 287

    [13]

    Lan J H, Wang L, Li S, Yuan L Y, Feng Y X, Sun W, Zhao Y L, Chai Z F, Shi W Q 2013 J. Appl. Phys. 113 183514

    [14]

    Yu J G, Devanathan R, Weber W J 2009 J. Phys.:Condens. Matter 21 435401

    [15]

    Grimes R W, Catlow C R A 1991 Philos. Trans. Phys. Sci. Eng. 335 609

    [16]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [17]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [18]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [19]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998 Phys. Rev. B 57 1505

    [20]

    Vathonne E, Wiktor J, Freyss M, Jomard G, Bertolus M 2014 J. Phys.:Condens. Matter 26 325501

    [21]

    Dorado B, Amadon B, Freyss M, Bertolus M 2009 Phys. Rev. B 79 235125

    [22]

    Dorado B, Jomard G, Freyss M, Bertolus M 2010 Phys. Rev. B 82 035114

    [23]

    Sinnott S B, Uberuaga B P 2014 Am. Ceram. Soc. Bull. 93 28

    [24]

    Ngayamhappy R, Krack M, Pautz A 2015 J. Phys.:Condens. Matter 27 455401

    [25]

    Hong M, Phillpot S R, Lee C W, Nerikar P, Uberuaga B P, Stanek C R, Sinnott S B 2012 Phys. Rev. B 85 144110

  • [1] 刘东昆, 王庆宇, 张田, 周羽, 王翔. 大晶粒UO2燃料裂变气体释放行为相场模拟研究. 物理学报, 2024, 73(6): 066102. doi: 10.7498/aps.73.20231773
    [2] 徐秋梅, 缑洁, 张崇宏, 杨治虎, 王彦瑜, 韩旭孝, 李建洋. 645 MeV Xe35+离子辐照SiO2在线光发射的研究. 物理学报, 2023, 72(4): 043402. doi: 10.7498/aps.72.20221952
    [3] 雷建廷, 余璇, 史国强, 闫顺成, 孙少华, 王全军, 丁宝卫, 马新文, 张少锋, 丁晶洁. 基于极紫外光的Ne, Xe原子电离. 物理学报, 2022, 71(14): 143201. doi: 10.7498/aps.71.20220341
    [4] 姜彦博, 柳文波, 孙志鹏, 喇永孝, 恽迪. 外加应力作用下 UO2 中空洞演化过程的相场模拟. 物理学报, 2022, 71(2): 026103. doi: 10.7498/aps.71.20211440
    [5] 刘飞, 文志鹏. Zr, Nb, V在α-Fe(C)中的占位、电子结构及键合作用的第一性原理研究. 物理学报, 2019, 68(13): 137101. doi: 10.7498/aps.68.20182282
    [6] 范航, 王珊珊, 李玉红. 二氧化铀电子结构和弹性性质的第一性原理研究. 物理学报, 2015, 64(9): 097101. doi: 10.7498/aps.64.097101
    [7] 张品亮, 龚自正, 姬广富, 刘崧. α-Ti2Zr高压物性的第一性原理计算研究. 物理学报, 2013, 62(4): 046202. doi: 10.7498/aps.62.046202
    [8] 肖红星, 龙冲生. UO2 晶体中低密勒指数晶面表面能的分子动力学模拟. 物理学报, 2013, 62(10): 103104. doi: 10.7498/aps.62.103104
    [9] 李耀宗, 张小安, 梁昌慧, 赵永涛, 程锐, 周贤明, 王兴, 雷瑜, 孙渊博, 徐戈. 129Xe30+与Au作用激发的Au M-X射线与Xe L-X射线. 物理学报, 2012, 61(6): 063201. doi: 10.7498/aps.61.063201
    [10] 邓永和, 刘京铄. Mg-TM-H (TM=Sc, Ti, V, Y, Zr, Nb)晶体形成能力和电子性能. 物理学报, 2011, 60(11): 117102. doi: 10.7498/aps.60.117102
    [11] 陈秋云, 赖新春, 王小英, 张永彬, 谭世勇. UO2的电子结构及光学性质的第一性原理研究. 物理学报, 2010, 59(7): 4945-4949. doi: 10.7498/aps.59.4945
    [12] 魏彦薇, 杨宗献. Au在Zr掺杂的CeO2(110)面吸附的第一性原理研究. 物理学报, 2008, 57(11): 7139-7144. doi: 10.7498/aps.57.7139
    [13] 张 辉, 张国英, 杨 爽, 吴 迪, 戚克振. Zr基大块非晶中添加元素对非晶形成能力及耐蚀性的影响. 物理学报, 2008, 57(12): 7822-7826. doi: 10.7498/aps.57.7822
    [14] 戴佳钰, 张栋文, 袁建民. Xe原子吸附对GaAs(110)表面重构的影响. 物理学报, 2006, 55(11): 6073-6079. doi: 10.7498/aps.55.6073
    [15] 张小安, 赵永涛, 李福利, 杨治虎, 肖国青, 詹文龙. 129Xe30+轰击Ni表面激发靶原子偶极跃迁和禁戒 (M1和E2)跃迁的特征光谱线. 物理学报, 2004, 53(10): 3341-3346. doi: 10.7498/aps.53.3341
    [16] 王红艳, 高 涛, 易有根, 谭明亮, 朱正和, 傅依备, 汪小琳, 孙 颖. UO2分子的多体项展式势能函数. 物理学报, 1999, 48(12): 2215-2221. doi: 10.7498/aps.48.2215
    [17] 侯氢, 李家明. 自旋极化电子与Xe原子的弹性碰撞. 物理学报, 1992, 41(9): 1424-1430. doi: 10.7498/aps.41.1424
    [18] 李际周, 李竹起, 叶春堂, 吴善令, 何敏, 徐云辉, 郑志涛, 周立, 尹道乐. Nb对C-15相V2Zr和V2(HfZr)系列声子性能的影响. 物理学报, 1983, 32(12): 1613-1617. doi: 10.7498/aps.32.1613
    [19] 阮景辉, 陈桂英, 成之绪, 勾成, 杨同华, 陈凌孚, 周立, 尹道乐. (Hf0.5Zr0.5V2)Hx的声子谱与超导性的关系. 物理学报, 1983, 32(9): 1187-1190. doi: 10.7498/aps.32.1187
    [20] 熊光成, 尹道乐. C-15结构(Hf,Zr,Ta)V2和(Hf,Zr,Nb)V2合金超导转变的压力效应研究. 物理学报, 1982, 31(9): 1176-1182. doi: 10.7498/aps.31.1176
计量
  • 文章访问数:  6479
  • PDF下载量:  205
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-18
  • 修回日期:  2017-12-07
  • 刊出日期:  2019-02-20

/

返回文章
返回