搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于布洛赫方程的多色信标回波光子数数值仿真

王功长 魏凯 李岩

引用本文:
Citation:

基于布洛赫方程的多色信标回波光子数数值仿真

王功长, 魏凯, 李岩

Simulations of return flux of polychromatic laser guide stars based on Bloch equations

Wang Gong-Chang, Wei Kai, Li Yan
PDF
导出引用
  • 信标技术历经了自然信标、瑞利信标、钠信标以及信标阵列的发展过程仍无法实现真正意义上的全天空覆盖,而多色信标是大口径地基自适应望远镜实现100%天空覆盖率的有效手段之一.但是现有的多色信标的仿真模型都存在着一定的不足,特别是对一级激发中间层钠原子形成多色信标的仿真模型无法准确计算出多色信标的回波光子数.本文提出了基于布洛赫方程的仿真模型,对一级激发中间层钠原子形成多色信标回波光子数进行数值仿真,充分考虑多普勒展宽、进出作用场、碰撞以及反冲作用的影响,并采用回光效率描述回波光子数的多少.仿真结果表明,存在最优的激光器线宽使得回光效率达到最大,若采用功率密度为10 W/m2的激光器激发中间钠层,最优线宽为18 MHz,最大330 nm回光效率为0.907 Photons/[s·sr·atom·(W/m2)].
    Sodium laser guide star (LGS) becomes an essential part in modern astronomical adaptive optics system, especially for the next generation extremely large ground based telescope. The LGS technology has experienced the developmental stages as natural guide star, Rayleigh LGS, sodium LGS and constellation of LGS. The sky coverage is still limited in that the LGS cannot not be used to detect the tip/tilt aberrations. While the polychromatic laser guide star (PLGS) is one of the most effective ways to enlarge the sky coverage to 100%. Previous simulation models are insufficient for the accurate calculation of the return flux, especially for the simulation model of PLGS which is generated by one-photon excitation of mesospheric sodium atoms. The simulation model based on Bloch equations proposed in this paper can be used to compute the return flux of one-photon excited PLGS precisely. Doppler broadening, beam atom exchanging, collisions and recoil are taken into account in the model. The return flux is validated by the return efficiency. The simulation results indicate that with one-photon excitation of sodium atoms, a return efficiency of 330 nm is minimum compared with those of other wavelengths; the saturation power density will decrease with recoil increasing and increase with collision rate increasing; an optimal line-width exists up to maximum the photon return efficiency. In the best case, when the power density is 10 W/m2 at the sodium layer, the maximum return efficiency at 330 nm is 0.907 photons/s/sr/atom/(W/m2) with an optimal laser line-width of 18 MHz.
    [1]

    Babcock H W 1953 Publ. Astron. Soc. Pac. 65 229

    [2]

    Hardy J W 1998 Adaptive Optics for Astronomical Telescopes (New York: Oxford University Press) pp216-265

    [3]

    Happer W, Macdonald G, Max C 1994 J. Opt. Soc. Am. A 11 263

    [4]

    Thompson L A, Gardner C S 1987 Nature 328 229

    [5]

    Greenwood D P, Primmerman C A 1992 LLabJ 5 3

    [6]

    Fugate R Q, Spinhirne J M, Moroney J F, Cleis R A, Oliker M D, Boeke B R, Ellerbroek B L, Higgins C H, Ruane R E, Swindle D W, Jelonek M P, Lange W J, Slavin A C, Wild W J, Winker D M, Wynia J M 1994 J. Opt. Soc. Am. A 11 310

    [7]

    Rigaut F, Gendron E 1992 Astron. Astrophys. 261 677

    [8]

    Correia C M, Neichel B, Conan J M, Petit C, Sauvage J F, Fusco T, Vernet J D R, Thatte N 2016 SPIE Astronomical Telescopes + Instrumentation Edinburgh, June 26–July 1, 2016 p99094H

    [9]

    Boyer C, Adkins S, Andersen D R, Atwood J, Byrnes P, Cavaco J, Ellerbroek B, Gilles L, Gregory J, Herriot G 2014 SPIE Astronomical Telescopes + Instrumentation Palais des Congrés de Montréal, June 22-27, 2014 p91480X

    [10]

    Bouchez A H, Acton D S, Biasi R, Conan R, Espeland B, Esposito S, Filgueira J M, Gallieni D, Mcleod B A, Pinna E 2014 SPIE Astronomical Telescopes + Instrumentation Palais des Congrés de Montréal, June 22-27, 2014 p91480W

    [11]

    Wizinowich P L, Le Mignant D, Bouchez A H, Campbell R D, Chin J C Y, Contos A R, van Dam M A, Hartman S K, Johansson E M, Lafon R E, Lewis H, Stomski P J, Summers D M 2006 Publ. Astron. Soc. Pac. 118 297

    [12]

    Meilard N, Foy R, Langlois M, Tallon M, Thiébaut E, Petit A, Blazit A, Blanc P E, Chombart J, Fouche O 2010 SPIE Astronomical Telescopes and Instrumentation, San Diego, June 27-July 2, 2010 p77361W

    [13]

    Foy R, Migus A, Biraben F, Grynberg G, Mccullough P R, Tallon M 1995 A&AS 111 569

    [14]

    Friedman H, Foy R, Tallon M, Migus A 1996 Office of Scientific & Technical Information Technical Reports

    [15]

    Schoeck M, Foy R, Pique J P, Chevrou P, Ageorges N, Petit A D, Bellanger V, Fews H, Foy F C, Hoegemann C K 2000 Proc. SPIE 4007 296

    [16]

    Froc G, Rosencher E, Attal-Trétout B, Michau V 2000 Opt. Commun. 178 405

    [17]

    Foy R, Tallon M, Tallonbosc I, Thiébaut E, Vaillant J, Foy F, Robert D, Friedman H, Biraben F, Grynberg G 2000 J. Opt. Soc. Am. A 17 2236

    [18]

    Foy R, Tallon M, Thiebaut E, Vaillant J, Pique J P, Mueller D, D'Orgeville C, Segonds P, Petit A D, Chevrou P 2000 Proc. SPIE 4007 284

    [19]

    Schoeck M, Foy R, Pique J P, Tallon M, Laubscher M 1999 Proc. SPIE 3762 321

    [20]

    Foy R, Pique J P, Bellanger V, Petit A D, Hogemann C K, Noethe L, Schock M, Tallon M, Thiebaut E, Vaillant J 2003 Proc. SPIE 4839 484

    [21]

    Foy R, Pique J P, Petit A D, Michau V, Bellanger V, Deron R, Hoegemann C K, Laubscher M, D'Orgeville C, Schoeck M 2000 Proc. SPIE 4065 312

    [22]

    Pique J P, Moldovan I C, Fesquet V, Chatellus H G D, Marc F 2006 Proc. SPIE 6272 62723D

    [23]

    Pique J P, Moldovan I C, Fesquet V 2006 J. Opt. Soc. Am. A 23 2817

    [24]

    Guillet D C H, Pique J P, Moldovan I C 2008 J. Opt. Soc. Am. A 25 400

    [25]

    Bellanger V, Courcelle A, Petit A 2004 Comput. Phys. Commun. 162 143

    [26]

    Milonni P W, Fearn H, Telle J M, Fugate R Q 1999 J. Opt. Soc. Am. A 16 2555

    [27]

    Hillman P D, Drummond J D, Denman C A, Fugate R Q 2008 Proc. SPIE 7015 70150L

    [28]

    Holzlöhner R, Rochester S M, Calia D B, Budker D, Higbie J M, Hackenberg W 2010 Astron. Astrophys. 510 1109

    [29]

    Feng L, Jin K, Shen Z, Wei K 2015 Applied Optics and Photon Beijing, China, May 5-7, 2015 p96781B

    [30]

    Foy R, Fusco T, Suu A L V, Perruchot S, Petit A, Tallon M, Thiébaut É, Boër M 2008 Proc. SPIE 7015 135

    [31]

    Herman J R, Bass P 2008 Proc. SPIE 172 135

    [32]

    Morris J R 1994 J. Opt. Soc. Am. A 11 832

    [33]

    Sansonetti J E 2008 J. Phys. Chem. Ref. Data 37 1659

    [34]

    Auzinsh M, Budker D, Rochester S M 2010 Optically Polarized Atoms (New York: Oxford University Press) pp198-252

    [35]

    Kane T J, Hillman P D, Denman C A 2014 SPIE Astronomical Telescopes + Instrumentation Palais des Congrés de Montréal, June 22-27, 2014 p91483G

    [36]

    Holzlöhner R, Calia D B, Budker D, Pfrommer T, Higbie J M 2012 SPIE Astronomical Telescopes + Instrumentation, Amsterdam, July 1-6, 2012 84470H

  • [1]

    Babcock H W 1953 Publ. Astron. Soc. Pac. 65 229

    [2]

    Hardy J W 1998 Adaptive Optics for Astronomical Telescopes (New York: Oxford University Press) pp216-265

    [3]

    Happer W, Macdonald G, Max C 1994 J. Opt. Soc. Am. A 11 263

    [4]

    Thompson L A, Gardner C S 1987 Nature 328 229

    [5]

    Greenwood D P, Primmerman C A 1992 LLabJ 5 3

    [6]

    Fugate R Q, Spinhirne J M, Moroney J F, Cleis R A, Oliker M D, Boeke B R, Ellerbroek B L, Higgins C H, Ruane R E, Swindle D W, Jelonek M P, Lange W J, Slavin A C, Wild W J, Winker D M, Wynia J M 1994 J. Opt. Soc. Am. A 11 310

    [7]

    Rigaut F, Gendron E 1992 Astron. Astrophys. 261 677

    [8]

    Correia C M, Neichel B, Conan J M, Petit C, Sauvage J F, Fusco T, Vernet J D R, Thatte N 2016 SPIE Astronomical Telescopes + Instrumentation Edinburgh, June 26–July 1, 2016 p99094H

    [9]

    Boyer C, Adkins S, Andersen D R, Atwood J, Byrnes P, Cavaco J, Ellerbroek B, Gilles L, Gregory J, Herriot G 2014 SPIE Astronomical Telescopes + Instrumentation Palais des Congrés de Montréal, June 22-27, 2014 p91480X

    [10]

    Bouchez A H, Acton D S, Biasi R, Conan R, Espeland B, Esposito S, Filgueira J M, Gallieni D, Mcleod B A, Pinna E 2014 SPIE Astronomical Telescopes + Instrumentation Palais des Congrés de Montréal, June 22-27, 2014 p91480W

    [11]

    Wizinowich P L, Le Mignant D, Bouchez A H, Campbell R D, Chin J C Y, Contos A R, van Dam M A, Hartman S K, Johansson E M, Lafon R E, Lewis H, Stomski P J, Summers D M 2006 Publ. Astron. Soc. Pac. 118 297

    [12]

    Meilard N, Foy R, Langlois M, Tallon M, Thiébaut E, Petit A, Blazit A, Blanc P E, Chombart J, Fouche O 2010 SPIE Astronomical Telescopes and Instrumentation, San Diego, June 27-July 2, 2010 p77361W

    [13]

    Foy R, Migus A, Biraben F, Grynberg G, Mccullough P R, Tallon M 1995 A&AS 111 569

    [14]

    Friedman H, Foy R, Tallon M, Migus A 1996 Office of Scientific & Technical Information Technical Reports

    [15]

    Schoeck M, Foy R, Pique J P, Chevrou P, Ageorges N, Petit A D, Bellanger V, Fews H, Foy F C, Hoegemann C K 2000 Proc. SPIE 4007 296

    [16]

    Froc G, Rosencher E, Attal-Trétout B, Michau V 2000 Opt. Commun. 178 405

    [17]

    Foy R, Tallon M, Tallonbosc I, Thiébaut E, Vaillant J, Foy F, Robert D, Friedman H, Biraben F, Grynberg G 2000 J. Opt. Soc. Am. A 17 2236

    [18]

    Foy R, Tallon M, Thiebaut E, Vaillant J, Pique J P, Mueller D, D'Orgeville C, Segonds P, Petit A D, Chevrou P 2000 Proc. SPIE 4007 284

    [19]

    Schoeck M, Foy R, Pique J P, Tallon M, Laubscher M 1999 Proc. SPIE 3762 321

    [20]

    Foy R, Pique J P, Bellanger V, Petit A D, Hogemann C K, Noethe L, Schock M, Tallon M, Thiebaut E, Vaillant J 2003 Proc. SPIE 4839 484

    [21]

    Foy R, Pique J P, Petit A D, Michau V, Bellanger V, Deron R, Hoegemann C K, Laubscher M, D'Orgeville C, Schoeck M 2000 Proc. SPIE 4065 312

    [22]

    Pique J P, Moldovan I C, Fesquet V, Chatellus H G D, Marc F 2006 Proc. SPIE 6272 62723D

    [23]

    Pique J P, Moldovan I C, Fesquet V 2006 J. Opt. Soc. Am. A 23 2817

    [24]

    Guillet D C H, Pique J P, Moldovan I C 2008 J. Opt. Soc. Am. A 25 400

    [25]

    Bellanger V, Courcelle A, Petit A 2004 Comput. Phys. Commun. 162 143

    [26]

    Milonni P W, Fearn H, Telle J M, Fugate R Q 1999 J. Opt. Soc. Am. A 16 2555

    [27]

    Hillman P D, Drummond J D, Denman C A, Fugate R Q 2008 Proc. SPIE 7015 70150L

    [28]

    Holzlöhner R, Rochester S M, Calia D B, Budker D, Higbie J M, Hackenberg W 2010 Astron. Astrophys. 510 1109

    [29]

    Feng L, Jin K, Shen Z, Wei K 2015 Applied Optics and Photon Beijing, China, May 5-7, 2015 p96781B

    [30]

    Foy R, Fusco T, Suu A L V, Perruchot S, Petit A, Tallon M, Thiébaut É, Boër M 2008 Proc. SPIE 7015 135

    [31]

    Herman J R, Bass P 2008 Proc. SPIE 172 135

    [32]

    Morris J R 1994 J. Opt. Soc. Am. A 11 832

    [33]

    Sansonetti J E 2008 J. Phys. Chem. Ref. Data 37 1659

    [34]

    Auzinsh M, Budker D, Rochester S M 2010 Optically Polarized Atoms (New York: Oxford University Press) pp198-252

    [35]

    Kane T J, Hillman P D, Denman C A 2014 SPIE Astronomical Telescopes + Instrumentation Palais des Congrés de Montréal, June 22-27, 2014 p91483G

    [36]

    Holzlöhner R, Calia D B, Budker D, Pfrommer T, Higbie J M 2012 SPIE Astronomical Telescopes + Instrumentation, Amsterdam, July 1-6, 2012 84470H

  • [1] 侯阿慧, 胡以华, 方佳节, 赵楠翔, 徐世龙. 平动小目标光子探测回波特性及测距误差研究. 物理学报, 2022, 71(7): 074205. doi: 10.7498/aps.71.20211998
    [2] 邢雪燕, 李霞霞, 陈宇辉, 张向东. 基于光子晶体微腔的回波光量子存储. 物理学报, 2022, 71(11): 114201. doi: 10.7498/aps.71.20220083
    [3] 鱼在洋, 郑锦韬, 张洋, 汪之国, 孙辉, 熊志强, 罗晖. 核磁共振陀螺中EPR信号响应不对称性研究. 物理学报, 2022, 71(22): 220701. doi: 10.7498/aps.71.20220775
    [4] 刘金璐, 杨杰, 张涛, 樊矾, 黄伟, 徐兵杰. 一种基于平衡零差探测技术的平均光子数测量方法. 物理学报, 2021, 70(24): 240303. doi: 10.7498/aps.70.20211216
    [5] 刘向远, 钱仙妹, 朱文越, 刘丹丹, 范传宇, 周军, 杨欢. 基于波长330 nm激光激发多色激光导星回波光子数的数值计算与探讨. 物理学报, 2018, 67(1): 014205. doi: 10.7498/aps.67.20171025
    [6] 夏茂鹏, 李健军, 高冬阳, 胡友勃, 盛文阳, 庞伟伟, 郑小兵. 基于相关光子多模式相关性的InSb模拟探测器定标方法. 物理学报, 2015, 64(24): 240601. doi: 10.7498/aps.64.240601
    [7] 邱骏鹏, 梁闰富, 彭晓, 李亚晖, 刘立新, 尹君, 屈军乐, 牛憨笨. 多色双光子激发荧光显微技术实验研究. 物理学报, 2015, 64(4): 048701. doi: 10.7498/aps.64.048701
    [8] 刘向远, 钱仙妹, 张穗萌, 崔朝龙. 宏-微脉冲激光激发钠信标回波光子数的数值计算与探讨. 物理学报, 2015, 64(9): 094206. doi: 10.7498/aps.64.094206
    [9] 金芹, 董海明, 韩奎, 王雪峰. 石墨烯超快动态光学性质. 物理学报, 2015, 64(23): 237801. doi: 10.7498/aps.64.237801
    [10] 王二垒, 姜海明, 谢康, 张秀霞. 一种高双折射高非线性多零色散波长光子晶体光纤. 物理学报, 2014, 63(13): 134210. doi: 10.7498/aps.63.134210
    [11] 耿超, 谭毅, 牟进博, 李新阳. 多单元光纤激光阵列的倾斜控制实验研究. 物理学报, 2013, 62(2): 024206. doi: 10.7498/aps.62.024206
    [12] 刁其龙, 黄春琳. 抑制穿过具有倾斜角度的介质探测成像时产生的寄生干涉条纹现象. 物理学报, 2012, 61(21): 210204. doi: 10.7498/aps.61.210204
    [13] 王旦霞, 张建文, 吴润衡. 弹性矩形板方程在非线性边界条件下整体解的存在唯一性. 物理学报, 2008, 57(11): 6741-6750. doi: 10.7498/aps.57.6741
    [14] 张建文, 王旦霞, 吴润衡. 一类广义强阻尼Sine-Gordon方程的整体解. 物理学报, 2008, 57(4): 2021-2025. doi: 10.7498/aps.57.2021
    [15] 王 科, 郑婉华, 任 刚, 杜晓宇, 邢名欣, 陈良惠. 双色量子阱红外探测器顶部光子晶体耦合层的设计优化. 物理学报, 2008, 57(3): 1730-1736. doi: 10.7498/aps.57.1730
    [16] 张贵银, 靳一东. NO2分子的光学-光学双色双共振多光子离化谱. 物理学报, 2008, 57(1): 132-136. doi: 10.7498/aps.57.132
    [17] 孙 涛, 陈兴国, 胡晓宁, 李言谨. HgCdTe长波光伏探测器的表面漏电流及1/f噪声研究. 物理学报, 2005, 54(7): 3357-3362. doi: 10.7498/aps.54.3357
    [18] 张彦鹏, 朱京平, 唐天同, 付盘铭. UMSCTS中光子回波的研究. 物理学报, 1998, 47(10): 1651-1657. doi: 10.7498/aps.47.1651
    [19] 林仁明, 张林. 吸收和色散混合受驱动光学系统多光子FPE和稳态方程. 物理学报, 1990, 39(6): 47-53. doi: 10.7498/aps.39.47
    [20] 林仁明, 黄思先, 张林. 受驱动光学系统多光子量子统计理论(Ⅰ)——Fokker-Planck方程和良腔情况. 物理学报, 1988, 37(4): 573-581. doi: 10.7498/aps.37.573
计量
  • 文章访问数:  5889
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-01
  • 修回日期:  2017-11-13
  • 刊出日期:  2018-03-05

/

返回文章
返回