搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种测量大气消光系数边界值的新方法

孙国栋 秦来安 张巳龙 何枫 谭逢富 靖旭 侯再红

引用本文:
Citation:

一种测量大气消光系数边界值的新方法

孙国栋, 秦来安, 张巳龙, 何枫, 谭逢富, 靖旭, 侯再红

A new method of measuring boundary value of atmospheric extinction coefficient

Sun Guo-Dong, Qin Lai-An, Zhang Si-Long, He Feng, Tan Feng-Fu, Jing Xu, Hou Zai-Hong
PDF
导出引用
  • 根据激光雷达方程建立了散射回波信号与大气消光系数边界值之间的非线性方程,以此为依据,提出了利用Broyden算法求解非线性方程确定大气消光系数边界值的新方法.在近地面开展了观测实验,首先分别使用Broyden算法和最小二乘法确定大气消光系数边界值,然后利用Klett反演方法获得消光系数空间分布,按路径积分计算得到两种方法下的大气透过率.同时,在附近开展了1 km路径的水平光单程传输实验直接测量大气透过率,并将此结果作为对比参考标准.将运用两种不同的边界值确定方法得到的水平大气透过率与参考标准值分别从相关性和相对误差两个方面进行了分析.实验结果表明:使用Broyden算法得到的大气透过率与参考标准具有高度的一致性;两者的线性相关系数高达0.968,平均相对误差约为最小二乘法与参考标准值平均相对误差的一半.由此验证了使用Broyden算法确定大气消光系数边界值的可行性和有效性.
    We construct a nonlinear equation between the return signal and the boundary value of extinction coefficient according to the lidar equation. And according to the nonlinear equation, we put forward a new method to solve the nonlinear equation by using Broyden algorithm. The Broyden algorithm is a concrete application of the quasi-Newton method. It has faster convergence and less iteration times, and does not need to calculate the derivative value. After choosing a suitable initial value, the boundary value can be obtained through the algorithm. A 532 nm single-band Mie scattering imaging lidar system is developed in Hefei, Southern China, for real-time atmospheric aerosol/particle remote sensing. Atmospheric measurement has been performed in Science Island during night time, and the time-range distribution of atmospheric backscattering signal was recorded on April 6, 2017, by employing the imaging lidar system. Then, the boundary values are achieved based on the Broyden algorithm and the least square algorithm. It adopts the Klett backward integration method to retrieve the horizontal distribution of extinction coefficients in a range of 1 km after the acquisition of the signal by changing the distance, then the horizontal atmospheric transmittance can be achieved based on the path integral. We also conduct a contrast experiment with the one-way transmission of the horizontal light near the ground within the range of 1 km at the same time. The initial site is situated in the experimental room besides the Dongpu reservoir and the end site is located on the second floor of our office building. The important things in this experiment are that the light reaching the target surface must be fully received and the laser power should be monitored at the double-end. Then we can obtain the transmittance by the direct method. By comparing the transmittance from the direct method with the transmittance from imaging lidar between the two different ways, i.e., Broyden algorithm and least square algorithm, then the correlation coefficients are obtained to be both over 0.95 in the period. And the method introduced in this paper is a little better than the least square algorithm with a value of 0.968. Besides, the average relative errors between the two inverse methods and the direct method are 4.66% and 9.10%, respectively. The average relative errors obtained by using the least square algorithm is about twice that by using the Broyden algorithm. It can be concluded that the algorithm introduced in this paper is effective and has certain advantages for the inverse problem.
      通信作者: 秦来安, laqin@aiofm.ac.cn
    • 基金项目: 国家自然科学基金(批准号:41405014)资助的课题.
      Corresponding author: Qin Lai-An, laqin@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41405014).
    [1]

    Man S W, Kai Q, Hong L, James R C, Kwon H L 2017 Atmos. Environ. 154 189

    [2]

    Zhao G Y, Liang M, Li Y Y, Duan Z, Zhu S M, Liang M, Sune S 2017 Appl. Opt. 56 1506

    [3]

    John E B, Sebastian B, Robert B, Parikh N C 2003 Appl. Opt. 42 2647

    [4]

    Liang M, Mikkel B 2015 Opt. Express 23 A1613

    [5]

    James D K 1985 Appl. Opt. 24 1638

    [6]

    James D K 1981 Appl. Opt. 20 211

    [7]

    Liang M, Peng G, Yang Y, Zheng K 2017 Opt. Express 25 A628

    [8]

    Cao N W 2015 Optik 126 2053

    [9]

    Masap M, Nobuo T 1994 Appl. Opt. 33 6451

    [10]

    Zhou J, Yue G M, Qi F D 1998 Chin. J. Quant. Elect. 15 140 (in Chinese) [周军, 岳古明, 戚福第 1998 量子电子学报 15 140]

    [11]

    Kovalev V A 1993 Appl. Opt. 32 6053

    [12]

    Wang Z H, Wang H B, He J, Zheng Y C, Yang J G, Li Y Q, Zhao X B 2008 Laser J. 29 36 (in Chinese) [王治华, 王宏波, 何捷, 郑玉臣, 杨经国, 李跃清, 赵兴炳 2008 激光杂志 29 36]

    [13]

    Chen T, Wu D C, Liu B, Cao K F, Wang Z Z, Bo G Y, Yuan L, Zhou J 2010 Acta Opt. Sin. 30 1531 (in Chinese) [陈涛, 吴德成, 刘博, 曹开法, 王珍珠, 伯广宇, 袁林, 周军 2010 光学学报 30 1531]

    [14]

    George L, John P (translated by Li J, Ren M M) 2016 Numerical Methods Using MATLAB (Beijing: China Machine Press) pp116-117 (in Chinese) [乔治 L, 约翰 P 著 (李君, 任明明 译)2016 数值方法-MATLAB版(北京: 机械工业出版社)第116–117页]

    [15]

    Ma X M, Tao Z M, Ma M J, Li C J, Wang Z Z, Liu D, Xie C B, Wang Y J 2014 Acta Opt. Sin. 34 0201001 (in Chinese) [麻晓敏, 陶宗明, 马明俊, 李成军, 王珍珠, 刘东, 谢晨波, 王英俭 2014 光学学报 34 0201001]

    [16]

    Anne G, Timothy P C (translated by Wu Z J, Wang G Y, Fan H J) 2016 Numerical Methods (Beijing: China Machine Press) p63 (in Chinese) [安妮 G, 蒂莫西 P C著(吴兆金, 王国英, 范红军 译) 2016 数值方法(北京: 机械工业出版社)第63页]

    [17]

    Xiong X L, Jiang L H, Feng S, Zhuang Z B, Zhao J Y 2012 Infrar. Laser Eng. 41 1744 (in Chinese) [熊兴隆, 蒋立辉, 冯帅, 庄子波, 赵俊媛 2012 红外与激光工程 41 1744]

    [18]

    Sun G D, Qin L A, Cheng Z, Hou Z H 2017 Laser Optoelect. Prog. 54 090102 (in Chinese) [孙国栋, 秦来安, 程知, 侯再红 2017 激光与光电子学进展 54 090102]

    [19]

    Yang C P 2011 M. S. Dissertation (Dalian: Dalian Maritime University) (in Chinese) [杨成鹏 2011 硕士学位论文 (大连: 大连海事大学)]

    [20]

    John E B, Parikh S, Trevor B K 2007 Appl. Opt. 46 2922

  • [1]

    Man S W, Kai Q, Hong L, James R C, Kwon H L 2017 Atmos. Environ. 154 189

    [2]

    Zhao G Y, Liang M, Li Y Y, Duan Z, Zhu S M, Liang M, Sune S 2017 Appl. Opt. 56 1506

    [3]

    John E B, Sebastian B, Robert B, Parikh N C 2003 Appl. Opt. 42 2647

    [4]

    Liang M, Mikkel B 2015 Opt. Express 23 A1613

    [5]

    James D K 1985 Appl. Opt. 24 1638

    [6]

    James D K 1981 Appl. Opt. 20 211

    [7]

    Liang M, Peng G, Yang Y, Zheng K 2017 Opt. Express 25 A628

    [8]

    Cao N W 2015 Optik 126 2053

    [9]

    Masap M, Nobuo T 1994 Appl. Opt. 33 6451

    [10]

    Zhou J, Yue G M, Qi F D 1998 Chin. J. Quant. Elect. 15 140 (in Chinese) [周军, 岳古明, 戚福第 1998 量子电子学报 15 140]

    [11]

    Kovalev V A 1993 Appl. Opt. 32 6053

    [12]

    Wang Z H, Wang H B, He J, Zheng Y C, Yang J G, Li Y Q, Zhao X B 2008 Laser J. 29 36 (in Chinese) [王治华, 王宏波, 何捷, 郑玉臣, 杨经国, 李跃清, 赵兴炳 2008 激光杂志 29 36]

    [13]

    Chen T, Wu D C, Liu B, Cao K F, Wang Z Z, Bo G Y, Yuan L, Zhou J 2010 Acta Opt. Sin. 30 1531 (in Chinese) [陈涛, 吴德成, 刘博, 曹开法, 王珍珠, 伯广宇, 袁林, 周军 2010 光学学报 30 1531]

    [14]

    George L, John P (translated by Li J, Ren M M) 2016 Numerical Methods Using MATLAB (Beijing: China Machine Press) pp116-117 (in Chinese) [乔治 L, 约翰 P 著 (李君, 任明明 译)2016 数值方法-MATLAB版(北京: 机械工业出版社)第116–117页]

    [15]

    Ma X M, Tao Z M, Ma M J, Li C J, Wang Z Z, Liu D, Xie C B, Wang Y J 2014 Acta Opt. Sin. 34 0201001 (in Chinese) [麻晓敏, 陶宗明, 马明俊, 李成军, 王珍珠, 刘东, 谢晨波, 王英俭 2014 光学学报 34 0201001]

    [16]

    Anne G, Timothy P C (translated by Wu Z J, Wang G Y, Fan H J) 2016 Numerical Methods (Beijing: China Machine Press) p63 (in Chinese) [安妮 G, 蒂莫西 P C著(吴兆金, 王国英, 范红军 译) 2016 数值方法(北京: 机械工业出版社)第63页]

    [17]

    Xiong X L, Jiang L H, Feng S, Zhuang Z B, Zhao J Y 2012 Infrar. Laser Eng. 41 1744 (in Chinese) [熊兴隆, 蒋立辉, 冯帅, 庄子波, 赵俊媛 2012 红外与激光工程 41 1744]

    [18]

    Sun G D, Qin L A, Cheng Z, Hou Z H 2017 Laser Optoelect. Prog. 54 090102 (in Chinese) [孙国栋, 秦来安, 程知, 侯再红 2017 激光与光电子学进展 54 090102]

    [19]

    Yang C P 2011 M. S. Dissertation (Dalian: Dalian Maritime University) (in Chinese) [杨成鹏 2011 硕士学位论文 (大连: 大连海事大学)]

    [20]

    John E B, Parikh S, Trevor B K 2007 Appl. Opt. 46 2922

  • [1] 张鑫源, 胡以华, 谌诗洋, 方佳节, 王一程, 刘一凡, 韩飞. 公里级激光反射层析实验和碎片质心估计. 物理学报, 2022, 71(11): 114205. doi: 10.7498/aps.71.20220205
    [2] 鲍冬, 华灯鑫, 齐豪, 王骏. 基于拉曼-布里渊散射的海水盐度精细探测遥感方法. 物理学报, 2021, 70(22): 229201. doi: 10.7498/aps.70.20210201
    [3] 李明飞, 袁梓豪, 刘院省, 邓意成, 王学锋. 光纤相控阵稀疏排布优化算法对比. 物理学报, 2021, 70(8): 084205. doi: 10.7498/aps.70.20201768
    [4] 冯帅, 常军, 胡瑶瑶, 吴昊, 刘鑫. 偏振成像激光雷达与短波红外复合光学接收系统设计与分析. 物理学报, 2020, 69(24): 244202. doi: 10.7498/aps.69.20200920
    [5] 刘厚通, 毛敏娟. 一种无需定标的地基激光雷达气溶胶消光系数精确反演方法. 物理学报, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
    [6] 邵君宜, 林兆祥, 刘林美, 龚威. 1.572 μm附近CO2吸收光谱的测量. 物理学报, 2017, 66(10): 104206. doi: 10.7498/aps.66.104206
    [7] 狄慧鸽, 华杭波, 张佳琪, 张战飞, 华灯鑫, 高飞, 汪丽, 辛文辉, 赵恒. 高光谱分辨率激光雷达鉴频器的设计与分析. 物理学报, 2017, 66(18): 184202. doi: 10.7498/aps.66.184202
    [8] 饶志敏, 华灯鑫, 何廷尧, 乐静. 基于本征荧光的生物气溶胶测量激光雷达性能. 物理学报, 2016, 65(20): 200701. doi: 10.7498/aps.65.200701
    [9] 朱湘飞, 林兆祥, 刘林美, 邵君宜, 龚威. 温度压强对CO2吸收光谱的影响. 物理学报, 2014, 63(17): 174203. doi: 10.7498/aps.63.174203
    [10] 谭林秋, 华灯鑫, 汪丽, 高飞, 狄慧鸽. Mach-Zehnder干涉仪条纹成像多普勒激光雷达风速反演及视场展宽技术. 物理学报, 2014, 63(22): 224205. doi: 10.7498/aps.63.224205
    [11] 狄慧鸽, 华灯鑫, 王玉峰, 闫庆. 米散射激光雷达重叠因子及全程回波信号标定技术研究. 物理学报, 2013, 62(9): 094215. doi: 10.7498/aps.62.094215
    [12] 梁善勇, 王江安, 张峰, 吴荣华, 宗思光, 王雨虹, 王乐东. 基于舰船尾流激光雷达的Monte Carlo模型及方差消减方法研究. 物理学报, 2013, 62(1): 015205. doi: 10.7498/aps.62.015205
    [13] 梁善勇, 王江安, 张峰, 石晟玮, 马治国, 刘涛, 王雨虹. 基于尾流激光雷达的能量对消式大动态接收技术. 物理学报, 2012, 61(11): 110701. doi: 10.7498/aps.61.110701
    [14] 沈法华, 舒志峰, 孙东松, 王忠纯, 薛向辉, 陈廷娣, 窦贤康. Rayleigh散射Doppler激光雷达风场反演方法改进. 物理学报, 2012, 61(3): 030702. doi: 10.7498/aps.61.030702
    [15] 连天虹, 王石语, 过振, 李兵斌, 蔡德芳, 文建国. 用于激光雷达的相干合成光束研究. 物理学报, 2011, 60(12): 124208. doi: 10.7498/aps.60.124208
    [16] 沈法华, 舒志峰, 孙东松, 王忠纯, 薛向辉, 陈廷娣, 窦贤康. 瑞利散射多普勒激光雷达风场反演方法. 物理学报, 2011, 60(6): 060704. doi: 10.7498/aps.60.060704
    [17] 王敏, 胡顺星, 方欣, 汪少林, 曹开法, 赵培涛, 范广强, 王英俭. 激光雷达精确修正对流层目标定位误差. 物理学报, 2009, 58(7): 5091-5097. doi: 10.7498/aps.58.5091
    [18] 张改霞, 赵曰峰, 张寅超, 赵培涛. 激光雷达白天探测大气边界层气溶胶. 物理学报, 2008, 57(11): 7390-7395. doi: 10.7498/aps.57.7390
    [19] 洪光烈, 张寅超, 赵曰峰, 邵石生, 谭 锟, 胡欢陵. 探测大气中CO2的Raman激光雷达. 物理学报, 2006, 55(2): 983-987. doi: 10.7498/aps.55.983
    [20] 郭冠军, 邵 芸. 激光散斑效应对激光雷达探测性能的影响. 物理学报, 2004, 53(7): 2089-2093. doi: 10.7498/aps.53.2089
计量
  • 文章访问数:  7798
  • PDF下载量:  191
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-11
  • 修回日期:  2017-12-04
  • 刊出日期:  2018-03-05

/

返回文章
返回