搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于金属狭缝阵列的各向异性偏振分束器

马婧 刘冬冬 王继成 冯延

引用本文:
Citation:

基于金属狭缝阵列的各向异性偏振分束器

马婧, 刘冬冬, 王继成, 冯延

Anisotropic polarization beam splitter based on metal slit array

Ma Jing, Liu Dong-Dong, Wang Ji-Cheng, Feng Yan
PDF
导出引用
  • 在金属-电介质结构的基础上提出了一种基于金属狭缝阵列的各向异性偏振分束器,并采用有限元法研究了横磁(TM)和横电(TE)偏振光入射后结构所表现出的负反射和镜面反射等特性.计算结果表明,当偏振光的入射角设定在2070时,入射的TM光发生强烈的负反射,而TE光的负反射很弱,并随着波长的增加而急剧下降.分析可得偏振分束光栅的理想负反射点和反射面的完美对称响应效果.通过仿真得到了理想负反射点的取值范围.结合严格耦合波法软件,计算不同偏振光入射时负反射和镜面反射条件下的反射率,其消光比高达106.
    Polarizing beam splitter (PBS) can separate the propagating directions of two incident orthogonally polarized light beams. However, conventional PBS and multi-layered metamaterial structures are complicated and neither of them can meet the requirements for broadband characteristics due to their resonant characters. In this paper, an anisotropic beam splitter based on metal slit array of the metal-dielectric structure is proposed in order to simplify the structure and improve the beam splitting efficiency. Because of the transverse momentum generated by the inhomogeneous interface, the transverse magnetic (TM) wave is negatively reflected from the surface of the gold film after it has entered into the slit with the waveguide mode of the plasma. When the free electrons on the metal surface oscillate, the transverse electric (TE) wave parallel to the grating direction can cause electrons to oscillate along the grating direction, so that the TE light cannot enter into the slit, resulting in specular reflection. The finite element method is used to study the effects of TM and TE polarized light such as negative reflection (NR) and specular reflection (SR). The results show that when the incident angle of the polarized light is set to be in a range from 20 to 70, the incident TM light has a strong NR of about 0.9, but the TE light is weakly reflected and decreases sharply with the increase of the wavelength. The ideal NR points of the beam splitter and the perfect symmetrical response of the reflection surface are calculated, and the ideal NR point satisfies P=/(2sin 0). When the incident light angle changes, the variations of the wavelength of the negative and zero order reflection peak are different from those of TM and TE wave, which is more conducive to the tuning of the interaction between light and grating structure. The NR and SR spectral reflectance of different polarized light beams are calculated by rigorous coupled-wave analysis, and the extinction ratios in the two cases are both 106. In addition, those designs of plasmonic splitters will pave the way for the practical applications of plasmonic devices in data storages and optical holography.
      通信作者: 王继成, jcwang@jiangnan.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11504139)、江苏省自然科学基金(批准号:BK20140167)、国家博士后基金(批准号:2017M611693)、江苏省高校自然科学基金(批准号:16KJB140016)和毫米波国家重点实验室开放课题(批准号:K201802)资助的课题.
      Corresponding author: Wang Ji-Cheng, jcwang@jiangnan.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11504139), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20140167), the National Postdoctoral Science Foundation of China (Grant No. 2017M611693), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 16KJB140016), and the Open Fund of State Key Laboratory of Millimeter Waves, China (Grant No. K201802).
    [1]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667

    [2]

    Pala R A, Liu J S, Barnard E S, Askarov D, Garnett E C, Fan S, Brongersma M L 2013 Nat. Commun. 4 2095

    [3]

    Xu T, Wu Y K, Luo X G, Guo L J 2010 Nat. Commun. 1 59

    [4]

    Monticone F, Estakhri N M, Alu A 2013 Phys. Rev. Lett. 110 203903

    [5]

    Valentine J, Zhang S, Zentgraf T, Ulin A E, Genov D A, Bartal G, Zhang X 2008 Nature 455 376

    [6]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [7]

    Yin X B, Ye Z L, Rho J, Wang Y, Zhang X 2013 Science 339 1405

    [8]

    Zhang W G, Zhang Y X, Geng P C, Wang B, Li X L, Wang S, Yan T Y 2017 Acta Phys. Sin. 66 070704 (in Chinese) [张伟刚, 张严昕, 耿鹏程, 王标, 李晓兰, 王松, 严铁毅 2017 物理学报 66 070704]

    [9]

    Jofre M, Anzolin G, Steinlechner F, Oliverio N, Torres J P, Pruneri V, Mitchell M W 2012 Opt. Express 20 12247

    [10]

    Assemat E, Picozzi A, Jauslin H R, Sugny D 2012 J. Opt. Soc. Am. B 29 559

    [11]

    Zhang X, Liao Q H, Chen S W, Hu P, Yu T, Liu N H 2011 Acta Phys. Sin. 60 104205 (in Chinese) [张旋, 廖清华, 陈淑文, 胡萍, 于天宝, 刘念华 2011 物理学报 60 104205]

    [12]

    Luo D, Sun X W, Dai H T, Demir H V 2011 Appl. Opt. 50 2316

    [13]

    Wang Y P, Wang M P, Huang X Q 2011 Opt. Express 19 25535

    [14]

    Nguyen H N, Lo Y L, Chen Y B, Yang T Y 2011 Appl. Opt. 50 415

    [15]

    Wu Y R, Hollowell A E, Zhang C, Guo L J 2013 Sci. Rep. 3 1194

    [16]

    Chen X, Yang F, Zhang C, Zhou J, Guo L J 2016 ACS Nano 10 4039

    [17]

    Zheng J, Ye Z C, Sheng Z M, Zhang J 2015 11th Conference onLasers and Electro-Optics Pacific Rim Busan, South Korea, August 24-28, 2015 p1

    [18]

    Ye Z C, Zheng J, Sun S, Guo L D, Shieh H P D 2013 IEEE J. Sel. Top. Quant. 19 4800205

    [19]

    Ni X J, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M 2012 Science 335 427

    [20]

    Ordal M A, Long L L, Bell R J, Bell S E, Bell R R, Alexander R W J, Ward C A 1983 Appl. Opt. 22 1099

    [21]

    Liu M L, Liu R J, Deng X B, Wang Y W, Lei H N 2010 Acta Phys. Sin. 59 4030 (in Chinese) [刘明礼, 刘仁杰, 邓晓斌, 王亚伟, 雷海娜 2010 物理学报 59 4030]

    [22]

    Pors A, Albrektsen O, Radko I P, Bozhevolnyi S I 2013 Sci. Rep. 3 2155

    [23]

    Deng Z L, Zhang S, Wang G P 2016 Nanoscale 8 1588

    [24]

    Deng Z L, Li X, Wang G P 2017 arXiv:170510171 [physics.optics]

  • [1]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667

    [2]

    Pala R A, Liu J S, Barnard E S, Askarov D, Garnett E C, Fan S, Brongersma M L 2013 Nat. Commun. 4 2095

    [3]

    Xu T, Wu Y K, Luo X G, Guo L J 2010 Nat. Commun. 1 59

    [4]

    Monticone F, Estakhri N M, Alu A 2013 Phys. Rev. Lett. 110 203903

    [5]

    Valentine J, Zhang S, Zentgraf T, Ulin A E, Genov D A, Bartal G, Zhang X 2008 Nature 455 376

    [6]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [7]

    Yin X B, Ye Z L, Rho J, Wang Y, Zhang X 2013 Science 339 1405

    [8]

    Zhang W G, Zhang Y X, Geng P C, Wang B, Li X L, Wang S, Yan T Y 2017 Acta Phys. Sin. 66 070704 (in Chinese) [张伟刚, 张严昕, 耿鹏程, 王标, 李晓兰, 王松, 严铁毅 2017 物理学报 66 070704]

    [9]

    Jofre M, Anzolin G, Steinlechner F, Oliverio N, Torres J P, Pruneri V, Mitchell M W 2012 Opt. Express 20 12247

    [10]

    Assemat E, Picozzi A, Jauslin H R, Sugny D 2012 J. Opt. Soc. Am. B 29 559

    [11]

    Zhang X, Liao Q H, Chen S W, Hu P, Yu T, Liu N H 2011 Acta Phys. Sin. 60 104205 (in Chinese) [张旋, 廖清华, 陈淑文, 胡萍, 于天宝, 刘念华 2011 物理学报 60 104205]

    [12]

    Luo D, Sun X W, Dai H T, Demir H V 2011 Appl. Opt. 50 2316

    [13]

    Wang Y P, Wang M P, Huang X Q 2011 Opt. Express 19 25535

    [14]

    Nguyen H N, Lo Y L, Chen Y B, Yang T Y 2011 Appl. Opt. 50 415

    [15]

    Wu Y R, Hollowell A E, Zhang C, Guo L J 2013 Sci. Rep. 3 1194

    [16]

    Chen X, Yang F, Zhang C, Zhou J, Guo L J 2016 ACS Nano 10 4039

    [17]

    Zheng J, Ye Z C, Sheng Z M, Zhang J 2015 11th Conference onLasers and Electro-Optics Pacific Rim Busan, South Korea, August 24-28, 2015 p1

    [18]

    Ye Z C, Zheng J, Sun S, Guo L D, Shieh H P D 2013 IEEE J. Sel. Top. Quant. 19 4800205

    [19]

    Ni X J, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M 2012 Science 335 427

    [20]

    Ordal M A, Long L L, Bell R J, Bell S E, Bell R R, Alexander R W J, Ward C A 1983 Appl. Opt. 22 1099

    [21]

    Liu M L, Liu R J, Deng X B, Wang Y W, Lei H N 2010 Acta Phys. Sin. 59 4030 (in Chinese) [刘明礼, 刘仁杰, 邓晓斌, 王亚伟, 雷海娜 2010 物理学报 59 4030]

    [22]

    Pors A, Albrektsen O, Radko I P, Bozhevolnyi S I 2013 Sci. Rep. 3 2155

    [23]

    Deng Z L, Zhang S, Wang G P 2016 Nanoscale 8 1588

    [24]

    Deng Z L, Li X, Wang G P 2017 arXiv:170510171 [physics.optics]

  • [1] 柯航, 李培丽, 施伟华. 基于下山单纯形算法逆向设计二维光子晶体波导型1×5分束器. 物理学报, 2022, 71(14): 144204. doi: 10.7498/aps.71.20220328
    [2] 马涛, 马家赫, 刘恒, 田永生, 刘少晖, 王芳. 一种电光可调的铌酸锂/钠基表面等离子体定向耦合器. 物理学报, 2022, 71(5): 054205. doi: 10.7498/aps.71.20211217
    [3] 祁云平, 南向红, 摆玉龙, 王向贤. 基于SPPs-CDEW混合模式的亚波长单缝多凹槽结构全光二极管. 物理学报, 2017, 66(11): 117102. doi: 10.7498/aps.66.117102
    [4] 杨丹青, 王莉, 王新龙. 基于周期结构负反射的远场增强成像研究. 物理学报, 2015, 64(5): 054301. doi: 10.7498/aps.64.054301
    [5] 刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军. 光抽运多层石墨烯太赫兹表面等离子体增益特性的研究. 物理学报, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [6] 凌进中, 黄元申, 王中飞, 王琦, 张大伟, 庄松林. 可调谐型金属线栅偏振器的特性研究. 物理学报, 2013, 62(14): 144214. doi: 10.7498/aps.62.144214
    [7] 洪霞, 郭雄彬, 方旭, 李衎, 叶辉. 基于表面等离子体共振增强的硅基锗金属-半导体-金属光电探测器的设计研究. 物理学报, 2013, 62(17): 178502. doi: 10.7498/aps.62.178502
    [8] 黄洪, 赵青, 焦蛟, 梁高峰, 黄小平. 深亚波长约束的表面等离子体纳米激光器研究. 物理学报, 2013, 62(13): 135201. doi: 10.7498/aps.62.135201
    [9] 张利伟, 赵玉环, 王勤, 方恺, 李卫彬, 乔文涛. 各向异性特异材料波导中表面等离子体的共振性质. 物理学报, 2012, 61(6): 068401. doi: 10.7498/aps.61.068401
    [10] 吕金光, 梁静秋, 梁中翥. 空间调制傅里叶变换光谱仪分束器色散特性研究. 物理学报, 2012, 61(14): 140702. doi: 10.7498/aps.61.140702
    [11] 胡海峰, 蔡利康, 白文理, 张晶, 王立娜, 宋国峰. 基于表面等离子体的太赫兹光束方向调控的模拟研究. 物理学报, 2011, 60(1): 014220. doi: 10.7498/aps.60.014220
    [12] 程木田. 经典光场相干控制金属纳米线表面等离子体传输. 物理学报, 2011, 60(11): 117301. doi: 10.7498/aps.60.117301
    [13] 童星, 韩奎, 沈晓鹏, 吴琼华, 周菲, 葛阳, 胡晓娟. 基于光子晶体自准直环形谐振腔的全光均分束器. 物理学报, 2011, 60(6): 064217. doi: 10.7498/aps.60.064217
    [14] 陈华, 汪力. 金属导线偶合THz表面等离子体波. 物理学报, 2009, 58(7): 4605-4609. doi: 10.7498/aps.58.4605
    [15] 朱桂新, 于天宝, 陈淑文, 石哲, 胡淑娟, 赖珍荃, 廖清华, 黄永箴. 一种实现光子晶体波导定向耦合型多路光均分的新方法. 物理学报, 2009, 58(2): 1014-1019. doi: 10.7498/aps.58.1014
    [16] 宋国峰, 张宇, 郭宝山, 汪卫敏. 表面等离子体调制单模面发射激光器的研究. 物理学报, 2009, 58(10): 7278-7281. doi: 10.7498/aps.58.7278
    [17] 周仁龙, 陈效双, 曾 勇, 张建标, 陈洪波, 王少伟, 陆 卫, 李宏建, 夏 辉, 王玲玲. 金属光子晶体平板的超强透射及其表面等离子体共振. 物理学报, 2008, 57(6): 3506-3513. doi: 10.7498/aps.57.3506
    [18] 花 磊, 宋国峰, 郭宝山, 汪卫敏, 张 宇. 中红外下半导体掺杂调制的表面等离子体透射增强效应. 物理学报, 2008, 57(11): 7210-7215. doi: 10.7498/aps.57.7210
    [19] 高建霞, 宋国峰, 郭宝山, 甘巧强, 陈良惠. 表面等离子体调制的纳米孔径垂直腔面发射激光器. 物理学报, 2007, 56(10): 5827-5830. doi: 10.7498/aps.56.5827
    [20] 李培丽, 黄德修, 张新亮, 朱光喜. 基于多电极单端耦合半导体光放大器的交叉增益调制型波长转换器. 物理学报, 2006, 55(6): 2746-2750. doi: 10.7498/aps.55.2746
计量
  • 文章访问数:  6934
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-24
  • 修回日期:  2018-01-05
  • 刊出日期:  2018-05-05

/

返回文章
返回