搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FP-1装置铝套筒内爆动力学过程的一维磁流体力学模拟

张扬 戴自换 孙奇志 章征伟 孙海权 王裴 丁宁 薛创 王冠琼 沈智军 李肖 王建国

引用本文:
Citation:

FP-1装置铝套筒内爆动力学过程的一维磁流体力学模拟

张扬, 戴自换, 孙奇志, 章征伟, 孙海权, 王裴, 丁宁, 薛创, 王冠琼, 沈智军, 李肖, 王建国

One-dimensional magneto-hydrodynamics simulation of magnetically driven solid liner implosions on FP-1 facility

Zhang Yang, Dai Zi-Huan, Sun Qi-Zhi, Zhang Zheng-Wei, Sun Hai-Quan, Wang Pei, Ding Ning, Xue Chuang, Wang Guan-Qiong, Shen Zhi-Jun, Li Xiao, Wang Jian-Guo
PDF
导出引用
  • 作为一种重要的柱面会聚冲击和准等熵压缩加载源,磁驱动固体套筒内爆技术已广泛应用于高能量密度物理实验研究.针对FP-1装置驱动的固体套筒内爆动力学过程,建立了含强度的一维磁流体力学模型,并对典型实验进行了模拟.计算获得的套筒内爆速度同实验结果较为相符.模拟结果显示,该装置在40 kV充压条件下,可以将直径3 cm,厚0.5 mm的铝套筒加速至1.1 km/s,内壁速度超过1.5 km/s,同时保持大部分材料为固体状态.内爆套筒与相同材料靶筒碰撞产生的冲击压力约9 GPa.改变靶筒内部填充气体的压力,可以获得不同的靶筒运动速度、轨迹以及反弹半径,以满足不同类型实验的研究需要.
    As an important cylindrical-convergent drive technology, magnetically driven solid liner implosion has been widely used in the high energy density physics (HEDP) experiments for different researches, such as the properties of condensed matter at an extreme pressure, the hydrodynamic behaviors of imploding systems, and the properties and behaviors of dense plasmas. On the 2.2 MA FP-1 facility (with a rise time of 7 s), implosions of aluminum liners and their impact on target liners are studied experimentally for exploring the applications of instability and ejecta mixing. A one-dimensional Lagrangian codeMADE1D is developed to study liner implosions numerically, which is based on magneto-hydrodynamics model with material strength, wide-range equation of state, Lee-More conductivity, and SCG (Steinberg, Cochran and Guinan) constitutive model. The code is based on the finite difference method. The finite difference equations are written in the covariant form for both Cartesian and cylindrical coordinates which enables the accurate simulation of different load geometries. Numerical results, such as the simulated velocity and radius at inner surface of the liner and target, agree well with the measurements. It shows that FP-1 has the ability to accelerate a 0.5 mm thick aluminum liner with an initial radius of 1.5 mm to a speed of more than 1.1 km/s, and the corresponding velocity of inner surface is more than 1.5 km/s due to the cylindrical convergence effect. In our calculation, most of the liner keeps solid throughout the implosion, though its outer surface is melted due to the Ohmic heating. A cylindrical converging shock about 8-10 GPa can be obtained by setting a target with an initial radius of 8-11 mm inside the liner coaxially. The numerical results show that since the imploding liner is fully magnetized when it impacts the target, the shock and the corresponding reflect release wave run faster than in the unmagnetized target. This means that the target will spall near the liner-target interface, though they are impedance-matched acoustically. The movement of the shocked target can be affected by the pre-filled gas inside. Increasing the gas pressure makes the target lose its velocity quickly, and the rebound radius increases as well. By adjusting the load design and gas pressure appropriately, we can obtain the right implosion process to meet the study requirement.
      通信作者: 张扬, zhang_yang@iapcm.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11405012,11675025,11471048,U1630249)、科学挑战专题(批准号:JCKY2016212A502)和计算物理实验室基金资助的课题.
      Corresponding author: Zhang Yang, zhang_yang@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11405012, 11675025, 11471048, U1630249), the Science Challenge Project, China (Grant No. JCKY2016212A502), and the Foundation of Laboratory of Computational Physics, China.
    [1]

    Sun C W 2007 High Energ. Dens. Phys. 1 41 (in Chinese)[孙承纬 2007 高能量密度物理 1 41]

    [2]

    Savage M E, Bennett L F, Bliss D E, Clark W T, Coats R S, Elizondo J M, LeChien K R, Harjes H C, Lehr J M, Maenchen J E, McDaniel D H, Pasik M F, Pointon T D, Owen A C, Seidel D B, Smith D L, Stoltzfus B S, Struve K W, Stygar W A, Warne L K, Woodworth J R, Mendel C W, Prestwich K R, Shoup R W, Johnson D L, Corley J P, Hodge K C, Wagoner T C, Wakeland P E 2007 Proceedings of the 2007 IEEE Pulsed Power Conference 1-4 979

    [3]

    Davis J, Knudson M D, Brown J L 2017 AIP Conference Proceedings 1793 060015

    [4]

    Lemke R W, Knudson M D, Davis J 2011 Int. J. Impact Eng. 38 480

    [5]

    Martin M R, Lemke R W, McBride R D, Davis J P, Dolan D H, Knudson M D, Cochrane K R, Sinars D B, Smith I C, Savage M, Stygar W A, Killebrew K, Flicker D G, Herrmann M C 2012 Phys. Plasmas 19 056310

    [6]

    Lemke R W, Dolan D H, Dalton D G, Brown J L, Tomlinson K, Robertson G R, Knudson M D, Harding E, Mattsson A E, Carpenter J H, Drake R R, Cochrane K, Blue B E, Robinson A C, Mattsson T R 2016 J. Appl. Phys. 119 015904

    [7]

    Faehl R J, Anderson B G, Clark D A, Ekdahl C A, Goforth J H, Lindemuth I R, Reinovsky R E, Sheehey P T, Peterson T, Tabaka L J, Chernyshev V K, Mokhov V N, Buzin V N, Burenkov O M, Buyko A M, Vakhrushev V V, Garanin S F, Grinevich B E, Ivanova G G, Demidov V A, Dudoladov V I, Zmushko V V, Kuzyaev A I, Kucherov A I, Lovyagin B M, Nizovtsev P N, Petrukhin A A, Pishurov A I, Sofronov V N, Sokolov S S, Solovyev V P, Startsev A I, Yakubov V B, Gubkov E V 2004 IEEE Trans. Plasma Sci. 32 1972

    [8]

    Bowers R L, Brownell J H, Lee H, McLenithan K D, Scannapieco A J, Shanahan W R 1998 J. Appl. Phys. 83 4146

    [9]

    Chandler E, Egan P, Winer K, Stokes J, Douglas Fulton R, King N S P, Morgan D V, Obst A W, Oro D W 1997 Lawrence Livermore National Laboratory Report UCRL-JC-127667

    [10]

    Hammerberg J E, Kyrala G A, Ore D M, Fulton R D, Anderson W E, Obst A W, Oona H, Stokes J 1999 Los Alamos National Laboratory Report LA-UR-99-3378

    [11]

    Bowman D W, Ballard E O, Barr G, Bennett G A, Cochrane J C, Davis H A, Davis T O, Dorr G, Gribble R F, Griego J R, Hood M, Kimerly H J, Martinez A, MCcuistian T, Miller R B, Ney S, Nielsen K, Pankuch P, Parsons W M, Potter C, Ricketts R, Salazar H R, Scudder D W, Shapiro C, Thompson M C, Trainor R J, Valdez G A, Yonemoto W 1999 IEEE Int. Pulsed Power Conf. 2 933

    [12]

    Parsons W M, Ballard E O, Barr G W, Bowman D W, Cochrane J C, Davis H A, Elizondo J M, Gribble R F, Griego J R, Hicks R D, Hinckley W B, Hosack K W, Miller R B, Nielsen K E, Parker J V, Rickets R L, Salazar H R, Sanchez P G, Scudder D W, Thompson M C, Trainor R J, Valdez G A, Vigil B N, Waganaar W J, Watt R G, Wysocki F J 1999 IEEE Int. Pulsed Power Conf. 2 976

    [13]

    Davis H A, Ballard E O, Elizondo J M, Gribble R F, Nielsen K E, Parker J V, Parsons W M 2000 IEEE Trans. Plasma Sci. 28 1405

    [14]

    Reinovsky R E 2000 IEEE Trans. Plasma Sci. 28 1563

    [15]

    Rousculp C L, Oro D M, Morris C, Saunders A, Reass W, Griego J R, Turchi P J, Reinovsky R E 2015 Los Alamos Report LA-UR-15-22889

    [16]

    Rousculp C L, Oro D M, Griego J R, Turchi P J, Reinovsky R E, Bradley J T Ⅲ, Cheng B, Freeman M S, Patten A R 2016 Los Alamos Report LA-UR-16-21901

    [17]

    Oliphant T A, Witte K H 1987 Los Alamos National Laboratory Report LA-10826

    [18]

    Keinigs R K, Atchison W L, Faehl R J, Thomas V A, Mclenithan K D, Trainor R J 1999 J. Appl. Phys. 85 7626

    [19]

    Steinberg D 1996 Lawrence Livermore National Laboratory Report UCRL-MA106439

    [20]

    Lindemann F A 1911 Phys. Z 11 609

    [21]

    Qiu A C, Kuai B, Zeng Z Z, Wang W S, Qiu M T, Wang L P, Cong P T, L M 2006 Acta Phys. Sin. 55 5917 (in Chinese)[邱爱慈, 蒯斌, 曾正中, 王文生, 邱孟通, 王亮平, 丛培天, 吕敏 2006 物理学报 55 5917]

    [22]

    Wu J, Wang L P, Li M, Wu G, Qiu M T, Yang H L, Li X W, Qiu A C 2014 Acta Phys. Sin. 63 035205 (in Chinese)[吴坚, 王亮平, 李沫, 吴刚, 邱孟通, 杨海亮, 李兴文, 邱爱慈 2014 物理学报 63 035205]

    [23]

    Wu J, Li X, Li M, Li Y, Qiu A 2017 J. Phys. D:Appl. Phys. 50 403002

    [24]

    Zhao S, Xue C, Zhu X L, Zhang R, Luo H Y, Zou X B, Wang X X, Ning C, Ding N, Shu X J 2013 Chin. Phys. B 22 045205

    [25]

    Wang G J, Zhao J H, Sun C W, Liu C L, Tan F L, Luo B Q, Zhong T, Cai J T, Zhang X P, Chen X M, Wu G, Shui R J, Xu C, Ma X, Deng S Y, Tao Y H 2015 J. Exp. Mech. 30 252 (in Chinese)[王桂吉, 赵剑衡, 孙承纬, 刘仓理, 谭福利, 罗斌强, 种涛, 蔡进涛, 张旭平, 陈学秒, 吴刚, 税荣杰, 胥超, 马骁, 邓顺义, 陶彦辉 2015 力学实验 30 252]

    [26]

    Wang G J, Tan F L, Sun C W, Zhao J H, Wang G H, Mo J J, Zhang N, Wang X S, Wu G, Han M 2009 Chinese Journal of High Pressure Physics 4 266 (in Chinese)[王桂吉, 谭福利, 孙承纬, 赵剑衡, 王刚华, 莫建军, 张宁, 汪小松, 吴刚, 韩梅 2009 高压物理学报 4 266]

    [27]

    Cai J T, Wang G J, Zhao J H, Mo J J, Weng J D, Wu G, Zhao F 2010 Chinese Journal of High Pressure Physics 6 455 (in Chinese)[蔡进涛, 王桂吉, 赵剑衡, 莫建军, 翁继东, 吴刚, 赵峰 2010 高压物理学报 6 455]

    [28]

    Deng J J, Xie W P, Feng S P, Wang M, Li H T, Song S Y, Xia M H, He A, Tian Q, Gu Y C, Guang Y C, Wei B, Zou W K, Huang X B, Wang L J, Zhang Z H, He Y, Yang L B 2013 IEEE Trans. Plamsa Sci. 41 2580

    [29]

    Wang G L, Guo S, Shen Z W, Zhang Z H, Liu C L, Li J, Zhang Z W, Jia Y S, Zhao X M, Chen H, Feng S P, Ji C, Xia M H, Wei B, Tian Q, Li Y, Ding Y, Guo F 2014 Acta Phys. Sin. 63 196201 (in Chinese)[王贵林, 郭帅, 沈兆武, 张朝辉, 刘仓理, 李军, 章征伟, 贾月松, 赵小明, 陈宏, 丰树平, 计策, 夏明鹤, 卫兵, 田青, 李勇, 丁瑜, 郭帆 2014 物理学报 63 196201]

    [30]

    Kan M X, Zhang Z H, Duan S C, Wang G H, Yang L, Xiao B, Wang G L 2015 High Power Laser and Particle Beams 27 125001 (in Chinese)[阚明先, 张朝辉, 段书超, 王刚华, 杨龙, 肖波, 王贵林 2015 强激光与粒子束 27 125001]

    [31]

    Yang L B, Sun C W, Liao H D, Hu X J 2002 High Power Laser and Particle Beams 14 767 (in Chinese)[杨礼兵, 孙承纬, 廖海东, 胡熙静 2002 强激光与粒子束 14 767]

    [32]

    Zhang Z W, Wei Y, Sun Q Z, Liu W, Zhao X M, Zhang Z H, Wang G L, Guo S, Xie W P 2016 High Power Laser and Particle Beams 28 045017 (in Chinese)[章征伟, 魏懿, 孙奇志, 刘伟, 赵小明, 张朝辉, 王贵林, 郭帅, 谢卫平 2016 强激光与粒子束 28 045017]

    [33]

    Zhang S L, Zhang Z W, Sun Q Z, Liu W, Zhao X M, Zhang Z H, Wang G L, Jia Y S 2017 High Power Laser and Particle Beams 29 105002 (in Chinese)[张绍龙, 章征伟, 孙奇志, 刘伟, 赵小明, 张朝辉, 王贵林, 贾月松 2017 强激光与粒子束 29 105002]

    [34]

    Liao H D, Hu X J, Yang L B, Feng S P 1998 Chinese Journal of High Pressure Physics 12 174 (in Chinese)[廖海东, 胡熙静, 杨礼兵, 丰树平 1998 高压物理学报 12 174]

    [35]

    Steinberg D J, Cochran S G, Guinan M W 1980 J. Appl. Phys. 51 1498

    [36]

    Lee Y T, More R M 1984 Phys. Fluids 27 1273

    [37]

    Liu H F, Song H F, Zhang Q L, Zhang G M, Zhao Y H 2016 Matter and Radiation at Extremes 1 123

  • [1]

    Sun C W 2007 High Energ. Dens. Phys. 1 41 (in Chinese)[孙承纬 2007 高能量密度物理 1 41]

    [2]

    Savage M E, Bennett L F, Bliss D E, Clark W T, Coats R S, Elizondo J M, LeChien K R, Harjes H C, Lehr J M, Maenchen J E, McDaniel D H, Pasik M F, Pointon T D, Owen A C, Seidel D B, Smith D L, Stoltzfus B S, Struve K W, Stygar W A, Warne L K, Woodworth J R, Mendel C W, Prestwich K R, Shoup R W, Johnson D L, Corley J P, Hodge K C, Wagoner T C, Wakeland P E 2007 Proceedings of the 2007 IEEE Pulsed Power Conference 1-4 979

    [3]

    Davis J, Knudson M D, Brown J L 2017 AIP Conference Proceedings 1793 060015

    [4]

    Lemke R W, Knudson M D, Davis J 2011 Int. J. Impact Eng. 38 480

    [5]

    Martin M R, Lemke R W, McBride R D, Davis J P, Dolan D H, Knudson M D, Cochrane K R, Sinars D B, Smith I C, Savage M, Stygar W A, Killebrew K, Flicker D G, Herrmann M C 2012 Phys. Plasmas 19 056310

    [6]

    Lemke R W, Dolan D H, Dalton D G, Brown J L, Tomlinson K, Robertson G R, Knudson M D, Harding E, Mattsson A E, Carpenter J H, Drake R R, Cochrane K, Blue B E, Robinson A C, Mattsson T R 2016 J. Appl. Phys. 119 015904

    [7]

    Faehl R J, Anderson B G, Clark D A, Ekdahl C A, Goforth J H, Lindemuth I R, Reinovsky R E, Sheehey P T, Peterson T, Tabaka L J, Chernyshev V K, Mokhov V N, Buzin V N, Burenkov O M, Buyko A M, Vakhrushev V V, Garanin S F, Grinevich B E, Ivanova G G, Demidov V A, Dudoladov V I, Zmushko V V, Kuzyaev A I, Kucherov A I, Lovyagin B M, Nizovtsev P N, Petrukhin A A, Pishurov A I, Sofronov V N, Sokolov S S, Solovyev V P, Startsev A I, Yakubov V B, Gubkov E V 2004 IEEE Trans. Plasma Sci. 32 1972

    [8]

    Bowers R L, Brownell J H, Lee H, McLenithan K D, Scannapieco A J, Shanahan W R 1998 J. Appl. Phys. 83 4146

    [9]

    Chandler E, Egan P, Winer K, Stokes J, Douglas Fulton R, King N S P, Morgan D V, Obst A W, Oro D W 1997 Lawrence Livermore National Laboratory Report UCRL-JC-127667

    [10]

    Hammerberg J E, Kyrala G A, Ore D M, Fulton R D, Anderson W E, Obst A W, Oona H, Stokes J 1999 Los Alamos National Laboratory Report LA-UR-99-3378

    [11]

    Bowman D W, Ballard E O, Barr G, Bennett G A, Cochrane J C, Davis H A, Davis T O, Dorr G, Gribble R F, Griego J R, Hood M, Kimerly H J, Martinez A, MCcuistian T, Miller R B, Ney S, Nielsen K, Pankuch P, Parsons W M, Potter C, Ricketts R, Salazar H R, Scudder D W, Shapiro C, Thompson M C, Trainor R J, Valdez G A, Yonemoto W 1999 IEEE Int. Pulsed Power Conf. 2 933

    [12]

    Parsons W M, Ballard E O, Barr G W, Bowman D W, Cochrane J C, Davis H A, Elizondo J M, Gribble R F, Griego J R, Hicks R D, Hinckley W B, Hosack K W, Miller R B, Nielsen K E, Parker J V, Rickets R L, Salazar H R, Sanchez P G, Scudder D W, Thompson M C, Trainor R J, Valdez G A, Vigil B N, Waganaar W J, Watt R G, Wysocki F J 1999 IEEE Int. Pulsed Power Conf. 2 976

    [13]

    Davis H A, Ballard E O, Elizondo J M, Gribble R F, Nielsen K E, Parker J V, Parsons W M 2000 IEEE Trans. Plasma Sci. 28 1405

    [14]

    Reinovsky R E 2000 IEEE Trans. Plasma Sci. 28 1563

    [15]

    Rousculp C L, Oro D M, Morris C, Saunders A, Reass W, Griego J R, Turchi P J, Reinovsky R E 2015 Los Alamos Report LA-UR-15-22889

    [16]

    Rousculp C L, Oro D M, Griego J R, Turchi P J, Reinovsky R E, Bradley J T Ⅲ, Cheng B, Freeman M S, Patten A R 2016 Los Alamos Report LA-UR-16-21901

    [17]

    Oliphant T A, Witte K H 1987 Los Alamos National Laboratory Report LA-10826

    [18]

    Keinigs R K, Atchison W L, Faehl R J, Thomas V A, Mclenithan K D, Trainor R J 1999 J. Appl. Phys. 85 7626

    [19]

    Steinberg D 1996 Lawrence Livermore National Laboratory Report UCRL-MA106439

    [20]

    Lindemann F A 1911 Phys. Z 11 609

    [21]

    Qiu A C, Kuai B, Zeng Z Z, Wang W S, Qiu M T, Wang L P, Cong P T, L M 2006 Acta Phys. Sin. 55 5917 (in Chinese)[邱爱慈, 蒯斌, 曾正中, 王文生, 邱孟通, 王亮平, 丛培天, 吕敏 2006 物理学报 55 5917]

    [22]

    Wu J, Wang L P, Li M, Wu G, Qiu M T, Yang H L, Li X W, Qiu A C 2014 Acta Phys. Sin. 63 035205 (in Chinese)[吴坚, 王亮平, 李沫, 吴刚, 邱孟通, 杨海亮, 李兴文, 邱爱慈 2014 物理学报 63 035205]

    [23]

    Wu J, Li X, Li M, Li Y, Qiu A 2017 J. Phys. D:Appl. Phys. 50 403002

    [24]

    Zhao S, Xue C, Zhu X L, Zhang R, Luo H Y, Zou X B, Wang X X, Ning C, Ding N, Shu X J 2013 Chin. Phys. B 22 045205

    [25]

    Wang G J, Zhao J H, Sun C W, Liu C L, Tan F L, Luo B Q, Zhong T, Cai J T, Zhang X P, Chen X M, Wu G, Shui R J, Xu C, Ma X, Deng S Y, Tao Y H 2015 J. Exp. Mech. 30 252 (in Chinese)[王桂吉, 赵剑衡, 孙承纬, 刘仓理, 谭福利, 罗斌强, 种涛, 蔡进涛, 张旭平, 陈学秒, 吴刚, 税荣杰, 胥超, 马骁, 邓顺义, 陶彦辉 2015 力学实验 30 252]

    [26]

    Wang G J, Tan F L, Sun C W, Zhao J H, Wang G H, Mo J J, Zhang N, Wang X S, Wu G, Han M 2009 Chinese Journal of High Pressure Physics 4 266 (in Chinese)[王桂吉, 谭福利, 孙承纬, 赵剑衡, 王刚华, 莫建军, 张宁, 汪小松, 吴刚, 韩梅 2009 高压物理学报 4 266]

    [27]

    Cai J T, Wang G J, Zhao J H, Mo J J, Weng J D, Wu G, Zhao F 2010 Chinese Journal of High Pressure Physics 6 455 (in Chinese)[蔡进涛, 王桂吉, 赵剑衡, 莫建军, 翁继东, 吴刚, 赵峰 2010 高压物理学报 6 455]

    [28]

    Deng J J, Xie W P, Feng S P, Wang M, Li H T, Song S Y, Xia M H, He A, Tian Q, Gu Y C, Guang Y C, Wei B, Zou W K, Huang X B, Wang L J, Zhang Z H, He Y, Yang L B 2013 IEEE Trans. Plamsa Sci. 41 2580

    [29]

    Wang G L, Guo S, Shen Z W, Zhang Z H, Liu C L, Li J, Zhang Z W, Jia Y S, Zhao X M, Chen H, Feng S P, Ji C, Xia M H, Wei B, Tian Q, Li Y, Ding Y, Guo F 2014 Acta Phys. Sin. 63 196201 (in Chinese)[王贵林, 郭帅, 沈兆武, 张朝辉, 刘仓理, 李军, 章征伟, 贾月松, 赵小明, 陈宏, 丰树平, 计策, 夏明鹤, 卫兵, 田青, 李勇, 丁瑜, 郭帆 2014 物理学报 63 196201]

    [30]

    Kan M X, Zhang Z H, Duan S C, Wang G H, Yang L, Xiao B, Wang G L 2015 High Power Laser and Particle Beams 27 125001 (in Chinese)[阚明先, 张朝辉, 段书超, 王刚华, 杨龙, 肖波, 王贵林 2015 强激光与粒子束 27 125001]

    [31]

    Yang L B, Sun C W, Liao H D, Hu X J 2002 High Power Laser and Particle Beams 14 767 (in Chinese)[杨礼兵, 孙承纬, 廖海东, 胡熙静 2002 强激光与粒子束 14 767]

    [32]

    Zhang Z W, Wei Y, Sun Q Z, Liu W, Zhao X M, Zhang Z H, Wang G L, Guo S, Xie W P 2016 High Power Laser and Particle Beams 28 045017 (in Chinese)[章征伟, 魏懿, 孙奇志, 刘伟, 赵小明, 张朝辉, 王贵林, 郭帅, 谢卫平 2016 强激光与粒子束 28 045017]

    [33]

    Zhang S L, Zhang Z W, Sun Q Z, Liu W, Zhao X M, Zhang Z H, Wang G L, Jia Y S 2017 High Power Laser and Particle Beams 29 105002 (in Chinese)[张绍龙, 章征伟, 孙奇志, 刘伟, 赵小明, 张朝辉, 王贵林, 贾月松 2017 强激光与粒子束 29 105002]

    [34]

    Liao H D, Hu X J, Yang L B, Feng S P 1998 Chinese Journal of High Pressure Physics 12 174 (in Chinese)[廖海东, 胡熙静, 杨礼兵, 丰树平 1998 高压物理学报 12 174]

    [35]

    Steinberg D J, Cochran S G, Guinan M W 1980 J. Appl. Phys. 51 1498

    [36]

    Lee Y T, More R M 1984 Phys. Fluids 27 1273

    [37]

    Liu H F, Song H F, Zhang Q L, Zhang G M, Zhao Y H 2016 Matter and Radiation at Extremes 1 123

  • [1] 浦实, 黄旭光. 相对论自旋流体力学. 物理学报, 2023, 72(7): 071202. doi: 10.7498/aps.72.20230036
    [2] 侯玉梅, 陈伟, 邹云鹏, 于利明, 石中兵, 段旭如. HL-2A装置高能量离子驱动的比压阿尔芬本征模的扫频行为. 物理学报, 2023, 72(21): 215211. doi: 10.7498/aps.72.20230726
    [3] 邹云鹏, 陈锡熊, 陈伟. 临界梯度模型的优化及集成模拟中高能量粒子模块的搭建. 物理学报, 2023, 72(21): 215206. doi: 10.7498/aps.72.20230681
    [4] 包健, 张文禄, 李定. 高能量电子激发比压阿尔芬本征模的全域模拟研究. 物理学报, 2023, 72(21): 215216. doi: 10.7498/aps.72.20230794
    [5] 徐明, 徐立清, 赵海林, 李颖颖, 钟国强, 郝保龙, 马瑞瑞, 陈伟, 刘海庆, 徐国盛, 胡建生, 万宝年, EAST团队. EAST反磁剪切qmin$\approx $2条件下磁流体力学不稳定性及内部输运垒物理实验结果简述. 物理学报, 2023, 72(21): 215204. doi: 10.7498/aps.72.20230721
    [6] 丁明松, 傅杨奥骁, 高铁锁, 董维中, 江涛, 刘庆宗. 高超声速磁流体力学控制霍尔效应影响. 物理学报, 2020, 69(21): 214703. doi: 10.7498/aps.69.20200630
    [7] 李斌, 刘占军, 郝亮, 郑春阳, 蔡洪波, 何民卿. 束匀滑光束偏折现象的模拟. 物理学报, 2020, 69(7): 075201. doi: 10.7498/aps.69.20191639
    [8] 章征伟, 王贵林, 张绍龙, 孙奇志, 刘伟, 赵小明, 贾月松, 谢卫平. 电作用量在磁驱动固体套筒内爆设计分析中的应用. 物理学报, 2020, 69(5): 050701. doi: 10.7498/aps.69.20191690
    [9] 车碧轩, 李小康, 程谋森, 郭大伟, 杨雄. 一种耦合外部电路的脉冲感应推力器磁流体力学数值仿真模型. 物理学报, 2018, 67(1): 015201. doi: 10.7498/aps.67.20171225
    [10] 张扬, 薛创, 丁宁, 刘海风, 宋海峰, 张朝辉, 王贵林, 孙顺凯, 宁成, 戴自换, 束小建. 聚龙一号装置磁驱动准等熵压缩实验的一维磁流体力学模拟. 物理学报, 2018, 67(3): 030702. doi: 10.7498/aps.67.20171920
    [11] 原晓霞, 仲佳勇. 双等离子体团相互作用的磁流体力学模拟. 物理学报, 2017, 66(7): 075202. doi: 10.7498/aps.66.075202
    [12] 李璐璐, 张华, 杨显俊. 反场构形的二维磁流体力学描述. 物理学报, 2014, 63(16): 165202. doi: 10.7498/aps.63.165202
    [13] 裴晓星, 仲佳勇, 张凯, 郑无敌, 梁贵云, 王菲鹿, 李玉同, 赵刚. 实验室天体物理的验证特例:W43A磁喷流. 物理学报, 2014, 63(14): 145201. doi: 10.7498/aps.63.145201
    [14] 晏骥, 韦敏习, 蒲昱东, 刘慎业, 詹夏雨, 林稚伟, 郑建华, 江少恩. 新型针孔点背光发光模型与实验研究. 物理学报, 2013, 62(1): 015204. doi: 10.7498/aps.62.015204
    [15] 晏骥, 郑建华, 陈黎, 涂绍勇, 韦敏习, 余波, 刘慎业, 江少恩. 基于神光Ⅲ原型装置的新型针孔点背光实验. 物理学报, 2013, 62(4): 045203. doi: 10.7498/aps.62.045203
    [16] 晏骥, 郑建华, 陈黎, 林稚伟, 江少恩. X射线相衬成像技术应用于高能量密度物理条件下内爆靶丸诊断. 物理学报, 2012, 61(14): 148701. doi: 10.7498/aps.61.148701
    [17] 李传起, 顾斌, 母丽丽, 张青梅, 陈美红, 蒋勇. 赤道面磁层顶位形的磁流体力学模拟研究. 物理学报, 2012, 61(21): 219402. doi: 10.7498/aps.61.219402
    [18] 杨维纮, 胡希伟. 非均匀载流柱形等离子体中的磁流体力学波. 物理学报, 1996, 45(4): 595-600. doi: 10.7498/aps.45.595
    [19] 朱武飚, 王友年, 邓新禄, 马腾才. 负偏压射频放电过程的流体力学模拟. 物理学报, 1996, 45(7): 1138-1145. doi: 10.7498/aps.45.1138
    [20] 陈仁. 关于磁流体力学激波中的开闸激震与关闸激震是否存在的问题. 物理学报, 1966, 22(9): 1098-1102. doi: 10.7498/aps.22.1098
计量
  • 文章访问数:  7262
  • PDF下载量:  162
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-25
  • 修回日期:  2018-01-23
  • 刊出日期:  2019-04-20

/

返回文章
返回