搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第一性原理研究Mn和Cu掺杂六钛酸钾(K2Ti6O13)的电子结构和光学性质

戚玉敏 陈恒利 金朋 路洪艳 崔春翔

引用本文:
Citation:

第一性原理研究Mn和Cu掺杂六钛酸钾(K2Ti6O13)的电子结构和光学性质

戚玉敏, 陈恒利, 金朋, 路洪艳, 崔春翔

First-principles study of electronic structures and optical properties of Mn and Cu doped potassium hexatitanate (K2Ti6O13)

Qi Yu-Min, Chen Heng-Li, Jin Peng, Lu Hong-Yan, Cui Chun-Xiang
PDF
导出引用
  • 六钛酸钾(K2Ti6O13)是宽带隙半导体光催化材料,只能响应波长较短的紫外光.为了使K2Ti6O13对可见光响应,本文采用第一性原理方法,研究过渡金属Mn和Cu掺杂改性后K2Ti6O13的电子结构和光学性质.计算结果表明:Mn,Cu掺杂后K2Ti6O13禁带中出现了杂质能级,这些杂质能级由O 2p和Ti 3d与Mn 3d或Cu 3d态杂化而成.对于Mn掺杂的K2Ti6O13,其带隙值变小,位于能带中间的杂质能级可作为电子跃迁的桥梁,从而实现了对可见光的吸收.对于Cu掺杂的K2Ti6O13,其带隙值虽略有增大,但是若考虑将与价带相连的杂质能级,带隙值将大大减小,且此杂质能级可抑制光生载流子的复合,使得掺杂后K2Ti6O13吸收带边红移至可见光区并在可见光范围内吸收强度明显增强.总的而言,Mn,Cu的掺杂实现了钛酸钾对可见光的吸收,同时Cu掺杂的效果要优于Mn掺杂的效果.研究结果对K2Ti6O13在光催化领域上的应用具有重要的意义.
    Potassium hexatitanate (K2Ti6O13) is a kind of wide band-gap semiconductor material with potential applications in photocatalysis. Unfortunately, it only responds to the short wavelengths of ultraviolet light, which seriously limits the utilization efficiency of solar energy. To extend its response to visible light, a promising strategy is to partly substitute some other transition metals for the Ti element. In this work, the electronic structures and optical properties of Mn-and Cu-doped K2Ti6O13 are systematically investigated by the first-principles calculations with the aid of the CASTEP module in the Materials Studio software package. The PW91 exchange-correlation functional is used with a plane wave basis set up to a 340 eV cutoff. The computational results show that the Mn-and Cu-doped K2Ti6O13 have impurity bands mainly stemming from the mix of Mn or Cu 3d states with Ti 3d states and O 2p states. Compared with the band gap of pristine K2Ti6O13 (2.834 eV), the band gap of Mn-doped one becomes narrow (2.724 eV), and its impurity energy level in the middle of the band gap can be used as a bridge for electronic transitions to facilitate the absorption of visible light. Although the band gap of Cu-doped K2Ti6O13 slightly increases (2.873 eV), it could be greatly narrowed (1.886 eV) when taking into consideration the impurity energy levels closely connected to the valence band. In addition, the impurity energy levels may form a shallow acceptor and suppress the carrier recombination in the Cu-doped K2Ti6O13. As usual, the calculated imaginary part of dielectric function as a function of photon energy shows that the ε2(ω) value is nearly zero for pure K2Ti6O13 when the photon energy is less than 3.5 eV, whereas there are finite values and also some peaks for the Mn-and Cu-doped ones. These peaks may originate from the impurity energy levels, whose occurrence makes the electron excitation occur readily by low photon energy. Thus, the absorption edges in the doped ones can red-shift to the visible-light region with enhancing absorption intensity. Finally, the simulated absorption spectra of the pristine and doped K2Ti6O13 are consistent with their electronic structures, which further confirms the above analysis. All the results show that the Cu-doped K2Ti6O13 exhibits higher visible-light photocatalytic efficiency than the Mn-doped one. The current work demonstrates that the absorption of visible light can be realized by the Mn or Cu doped potassium hexatitanate, with the effect of the latter being better than that of the former. The obtained conclusions are of great significance for understanding and further developing the potential applications of K2Ti6O13 in the field of photocatalysis.
      Corresponding author: Lu Hong-Yan, luhongyan2006@gmail.com;hutcui@hebut.edu.cn ; Cui Chun-Xiang, luhongyan2006@gmail.com;hutcui@hebut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574108, 21103224) and the Key Project of Natural Science Foundation of Hebei Province, China (Grant No. E2016202406).
    [1]

    Fujishima A, Honda K 1972 Nature 238 37

    [2]

    Su J, Lin Z, Chen G 2016 Appl. Catal. B:Environ. 186 127

    [3]

    Li C, Chen G, Sun J, Rao J, Han Z, Hu Y, Xing W, Zhang C 2016 Appl. Catal. B:Environ. 188 39

    [4]

    Lou S, Jia X, Wang Y, Zhou S 2015 Appl. Catal. B:Environ. 176 586

    [5]

    He Y R, Yan F F, Yu H Q, Yuan S J, Tong Z H, Sheng G P 2014 Appl. Energ. 113 164

    [6]

    Osterloh F E 2008 Chem. Mater. 20 35

    [7]

    Ran J, Zhang J, Yu J, Jaroniec M, Qiao S Z 2014 Chem. Soc. Rev. 43 7787

    [8]

    Zhao Z, Liu Q 2008 J. Phys. D:Appl. Phys. 41 025105

    [9]

    Tian Z, Liang C, Liu J, Zhang H, Zhang L 2011 J. Mater. Chem. 21 18242

    [10]

    Li D, Haneda H 2003 Chemosphere 51 129

    [11]

    Zhu J, Chen F, Zhang J, Chen H, Anpo M 2006 J. Photochem. Photobiol. A:Chem. 180 196

    [12]

    Qin L Z, Liang H, Liao B, Liu A D, Wu X Y, Sun J 2013 Nucl. Instrum. Meth. Phys. Res. Sect. B 307 385

    [13]

    Guo M, Du J 2012 Phys. Rev. B:Condens. Matter 407 1003

    [14]

    Impellizzeri G, Scuderi V, Romano L, Sberna P M, Arcadipane E, Sanz R, Scuderi M, Nicotra G, Bayle M, Carles R 2014 J. Appl. Phys. 116 173507

    [15]

    Liu G, Yang H G, Wang X, Cheng L, Pan J, Lu G Q, Cheng H M 2009 J. Am. Chem. Soc. 131 12868

    [16]

    Pan J H, Zhang X, Du A J, Sun D D, Leckie J O 2008 J. Am. Chem. Soc. 130 11256

    [17]

    Wang D H, Jia L, Wu X L, Lu L Q, Xu A W 2012 Nanoscale 4 576

    [18]

    Zhang K, Wang X, Guo X, He T, Feng Y 2014 J. Nanopart. Res. 16 2246

    [19]

    Zhang R, Wang Q, Liang J, Li Q, Dai J, Li W 2012 Phys. B:Condens. Matter 407 2709

    [20]

    Anpo M, Takeuchi M 2003 J. Catal. 216 505

    [21]

    Fujii H, Inata K, Ohtaki M, Eguchi K, Arai H 2001 J. Mater. Sci. 36 527

    [22]

    Hakuta Y, Hayashi H, Arai K 2004 J. Mater. Sci. 39 4977

    [23]

    Kapusuz D, Kalay Y E, Park J, Ozturk A 2015 J. Ceram. Process. Res. 16 291

    [24]

    Li Y, Yu H, Yang Y, Zheng F, Ni H, Zhang M, Guo M 2016 Ceram. Int. 42 11294

    [25]

    Xie J, Lu X, Zhu Y, Liu C, Bao N, Feng X 2003 J. Mater. Sci. 38 3641

    [26]

    Murakami R, Matsui K 1996 Wear 201 193

    [27]

    Han P D, Liang J, Yu Y, Bao H Q, Liu X G, Xu B S 2005 Rare Metal Mat. Eng. 34 56 (in Chinese) [韩培德, 梁建, 余愿, 鲍慧强, 刘旭光, 许并社 2005 稀有金属材料与工程 34 56]

    [28]

    RamíRez-Salgado J, Djurado E, Fabry P 2004 J. Eur. Ceram. Soc. 24 2477

    [29]

    Pescatori M, Quondamcarlo C 2003 Chem. Phys. Lett. 376 726

    [30]

    Du G H, Chen Q, Han P D, Yu Y, Peng L M 2003 Phys. Rev. B 67 035323

    [31]

    Wang Y, Zhang R, Li J, Li L, Lin S 2014 Nanoscale Res. Lett. 9 46

    [32]

    Wu S X, Ma Z, Qin Y N, Qi X Z, Liang Z C 2004 Acta Phys. Chim. Sin. 20 138 (in Chinese) [吴树新, 马智, 秦永宁, 齐晓周, 梁珍成 2004 物理化学学报 20 138]

    [33]

    Deng Q R, Xia X H, Guo M L, Gao Y, Shao G 2011 Mater. Lett. 65 2051

    [34]

    Colón G, Maicu M, Hidalgo M C, Navío J A 2006 Appl. Catal. B:Environ. 67 41

    [35]

    Andersson S, Wadsley A D 1962 Acta Crystallogr. 15 194

    [36]

    Segall M D, Lindan P J D, Probert M, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.:Condens. Matter 14 2717

    [37]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [38]

    Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys.:Condens. Matter 21 395502

    [39]

    Hua M, Li Y, Long C, Xia L 2012 Physica B 407 2811

    [40]

    Hua M Y, Li Y M, Li X 2011 J. Synth. Cryst. 40 1573 (in Chinese) [华熳煜, 李益民, 李夏 2011 人工晶体学报 40 1573]

    [41]

    Stampfl C, Walle C G V D 1999 Phys. Rev. B:Condens. Matter 59 5521

    [42]

    Perdew J P, Levy M 1983 Phys. Rev. Lett. 51 1884

    [43]

    Wan H, Xu L, Huang W Q, Huang G F, He C N, Zhou J H, Peng P 2014 Appl. Phys. A 116 741

    [44]

    Yang K, Li D F, Huang W Q, Xu L, Huang G F, Wen S 2017 Appl. Phys. A 123 96

    [45]

    Zhao Z Y, Liu Q J, Zhu Z Q, Zhang J 2008 Acta Phys. Sin. 57 3760 (in Chinese) [赵宗彦, 柳清菊, 朱忠其, 张瑾 2008 物理学报 57 3760]

    [46]

    Li J, Zhang Y C, Zhang M 2012 Mater. Lett. 79 136

  • [1]

    Fujishima A, Honda K 1972 Nature 238 37

    [2]

    Su J, Lin Z, Chen G 2016 Appl. Catal. B:Environ. 186 127

    [3]

    Li C, Chen G, Sun J, Rao J, Han Z, Hu Y, Xing W, Zhang C 2016 Appl. Catal. B:Environ. 188 39

    [4]

    Lou S, Jia X, Wang Y, Zhou S 2015 Appl. Catal. B:Environ. 176 586

    [5]

    He Y R, Yan F F, Yu H Q, Yuan S J, Tong Z H, Sheng G P 2014 Appl. Energ. 113 164

    [6]

    Osterloh F E 2008 Chem. Mater. 20 35

    [7]

    Ran J, Zhang J, Yu J, Jaroniec M, Qiao S Z 2014 Chem. Soc. Rev. 43 7787

    [8]

    Zhao Z, Liu Q 2008 J. Phys. D:Appl. Phys. 41 025105

    [9]

    Tian Z, Liang C, Liu J, Zhang H, Zhang L 2011 J. Mater. Chem. 21 18242

    [10]

    Li D, Haneda H 2003 Chemosphere 51 129

    [11]

    Zhu J, Chen F, Zhang J, Chen H, Anpo M 2006 J. Photochem. Photobiol. A:Chem. 180 196

    [12]

    Qin L Z, Liang H, Liao B, Liu A D, Wu X Y, Sun J 2013 Nucl. Instrum. Meth. Phys. Res. Sect. B 307 385

    [13]

    Guo M, Du J 2012 Phys. Rev. B:Condens. Matter 407 1003

    [14]

    Impellizzeri G, Scuderi V, Romano L, Sberna P M, Arcadipane E, Sanz R, Scuderi M, Nicotra G, Bayle M, Carles R 2014 J. Appl. Phys. 116 173507

    [15]

    Liu G, Yang H G, Wang X, Cheng L, Pan J, Lu G Q, Cheng H M 2009 J. Am. Chem. Soc. 131 12868

    [16]

    Pan J H, Zhang X, Du A J, Sun D D, Leckie J O 2008 J. Am. Chem. Soc. 130 11256

    [17]

    Wang D H, Jia L, Wu X L, Lu L Q, Xu A W 2012 Nanoscale 4 576

    [18]

    Zhang K, Wang X, Guo X, He T, Feng Y 2014 J. Nanopart. Res. 16 2246

    [19]

    Zhang R, Wang Q, Liang J, Li Q, Dai J, Li W 2012 Phys. B:Condens. Matter 407 2709

    [20]

    Anpo M, Takeuchi M 2003 J. Catal. 216 505

    [21]

    Fujii H, Inata K, Ohtaki M, Eguchi K, Arai H 2001 J. Mater. Sci. 36 527

    [22]

    Hakuta Y, Hayashi H, Arai K 2004 J. Mater. Sci. 39 4977

    [23]

    Kapusuz D, Kalay Y E, Park J, Ozturk A 2015 J. Ceram. Process. Res. 16 291

    [24]

    Li Y, Yu H, Yang Y, Zheng F, Ni H, Zhang M, Guo M 2016 Ceram. Int. 42 11294

    [25]

    Xie J, Lu X, Zhu Y, Liu C, Bao N, Feng X 2003 J. Mater. Sci. 38 3641

    [26]

    Murakami R, Matsui K 1996 Wear 201 193

    [27]

    Han P D, Liang J, Yu Y, Bao H Q, Liu X G, Xu B S 2005 Rare Metal Mat. Eng. 34 56 (in Chinese) [韩培德, 梁建, 余愿, 鲍慧强, 刘旭光, 许并社 2005 稀有金属材料与工程 34 56]

    [28]

    RamíRez-Salgado J, Djurado E, Fabry P 2004 J. Eur. Ceram. Soc. 24 2477

    [29]

    Pescatori M, Quondamcarlo C 2003 Chem. Phys. Lett. 376 726

    [30]

    Du G H, Chen Q, Han P D, Yu Y, Peng L M 2003 Phys. Rev. B 67 035323

    [31]

    Wang Y, Zhang R, Li J, Li L, Lin S 2014 Nanoscale Res. Lett. 9 46

    [32]

    Wu S X, Ma Z, Qin Y N, Qi X Z, Liang Z C 2004 Acta Phys. Chim. Sin. 20 138 (in Chinese) [吴树新, 马智, 秦永宁, 齐晓周, 梁珍成 2004 物理化学学报 20 138]

    [33]

    Deng Q R, Xia X H, Guo M L, Gao Y, Shao G 2011 Mater. Lett. 65 2051

    [34]

    Colón G, Maicu M, Hidalgo M C, Navío J A 2006 Appl. Catal. B:Environ. 67 41

    [35]

    Andersson S, Wadsley A D 1962 Acta Crystallogr. 15 194

    [36]

    Segall M D, Lindan P J D, Probert M, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.:Condens. Matter 14 2717

    [37]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [38]

    Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys.:Condens. Matter 21 395502

    [39]

    Hua M, Li Y, Long C, Xia L 2012 Physica B 407 2811

    [40]

    Hua M Y, Li Y M, Li X 2011 J. Synth. Cryst. 40 1573 (in Chinese) [华熳煜, 李益民, 李夏 2011 人工晶体学报 40 1573]

    [41]

    Stampfl C, Walle C G V D 1999 Phys. Rev. B:Condens. Matter 59 5521

    [42]

    Perdew J P, Levy M 1983 Phys. Rev. Lett. 51 1884

    [43]

    Wan H, Xu L, Huang W Q, Huang G F, He C N, Zhou J H, Peng P 2014 Appl. Phys. A 116 741

    [44]

    Yang K, Li D F, Huang W Q, Xu L, Huang G F, Wen S 2017 Appl. Phys. A 123 96

    [45]

    Zhao Z Y, Liu Q J, Zhu Z Q, Zhang J 2008 Acta Phys. Sin. 57 3760 (in Chinese) [赵宗彦, 柳清菊, 朱忠其, 张瑾 2008 物理学报 57 3760]

    [46]

    Li J, Zhang Y C, Zhang M 2012 Mater. Lett. 79 136

  • [1] 林洪斌, 林春, 陈越, 钟克华, 张健敏, 许桂贵, 黄志高. 第一性原理研究Mg掺杂对LiCoO2正极材料结构稳定性及其电子结构的影响. 物理学报, 2021, 70(13): 138201. doi: 10.7498/aps.70.20210064
    [2] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究. 物理学报, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [3] 丁超, 李卫, 刘菊燕, 王琳琳, 蔡云, 潘沛锋. Sb,S共掺杂SnO2电子结构的第一性原理分析. 物理学报, 2018, 67(21): 213102. doi: 10.7498/aps.67.20181228
    [4] 赵佰强, 张耘, 邱晓燕, 王学维. Cu,Fe掺杂LiNbO3晶体电子结构和光学性质的第一性原理研究. 物理学报, 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [5] 嘉明珍, 王红艳, 陈元正, 马存良, 王辉. Al, Fe, Mg掺杂Li2MnSiO4的电子结构和电化学性能的第一性原理研究. 物理学报, 2015, 64(8): 087101. doi: 10.7498/aps.64.087101
    [6] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究. 物理学报, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [7] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮. 3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究. 物理学报, 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [8] 李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜. 第一性原理研究稀土掺杂ZnO结构的光电性质. 物理学报, 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [9] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究. 物理学报, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [10] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究. 物理学报, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [11] 李聪, 侯清玉, 张振铎, 赵春旺, 张冰. Sm-N共掺杂对锐钛矿相TiO2的电子结构和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [12] 侯清玉, 马文, 迎春. Ga/N高共掺浓度对ZnO导电性能和红移影响的第一性原理研究. 物理学报, 2012, 61(1): 017103. doi: 10.7498/aps.61.017103
    [13] 王英龙, 王秀丽, 梁伟华, 郭建新, 丁学成, 褚立志, 邓泽超, 傅广生. 不同浓度Er掺杂Si纳米晶粒电子结构和光学性质的第一性原理研究. 物理学报, 2011, 60(12): 127302. doi: 10.7498/aps.60.127302
    [14] 张云, 邵晓红, 王治强. 3C-SiC材料p型掺杂的第一性原理研究. 物理学报, 2010, 59(8): 5652-5660. doi: 10.7498/aps.59.5652
    [15] 梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙. 镍掺杂硅纳米线电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [16] 侯清玉, 赵春旺, 金永军, 关玉琴, 林琳, 李继军. ZnO高掺杂Ga的浓度对导电性能和红移效应影响的第一性原理研究. 物理学报, 2010, 59(6): 4156-4161. doi: 10.7498/aps.59.4156
    [17] 毕艳军, 郭志友, 孙慧卿, 林 竹, 董玉成. Co和Mn共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [18] 郭建云, 郑 广, 何开华, 陈敬中. Al,Mg掺杂GaN电子结构及光学性质的第一性原理研究. 物理学报, 2008, 57(6): 3740-3746. doi: 10.7498/aps.57.3740
    [19] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [20] 潘志军, 张澜庭, 吴建生. 掺杂半导体β-FeSi2电子结构及几何结构第一性原理研究. 物理学报, 2005, 54(11): 5308-5313. doi: 10.7498/aps.54.5308
计量
  • 文章访问数:  8328
  • PDF下载量:  497
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-01
  • 修回日期:  2018-01-04
  • 刊出日期:  2019-03-20

/

返回文章
返回