搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向真彩色三维显示的分层角谱算法和Gerchberg-Saxton算法研究

范爽 张亚萍 王帆 高云龙 钱晓凡 张永安 许蔚 曹良才

引用本文:
Citation:

面向真彩色三维显示的分层角谱算法和Gerchberg-Saxton算法研究

范爽, 张亚萍, 王帆, 高云龙, 钱晓凡, 张永安, 许蔚, 曹良才

Gerchberg-Saxton algorithm and angular-spectrum layer-oriented method for true color three-dimensional display

Fan Shuang, Zhang Ya-Ping, Wang Fan, Gao Yun-Long, Qian Xiao-Fan, Zhang Yong-An, Xu Wei, Cao Liang-Cai
PDF
导出引用
  • 分层角谱算法可用于三维物体全息图的生成计算,在计算时间、占用内存和算法复杂度方面占有优势.本文基于强度图和深度图的分层角谱算法,对多波长采样进行分析,有效抑制混频现象,实现了真彩色物体的计算全息图生成.针对分层角谱算法重建时产生的散斑噪声问题,引入Gerchberg-Saxton (GS)算法,提出基于分层角谱算法的GS算法.通过计算比较引入GS算法前后再现像的均方根误差和峰值信噪比,证明该算法可有效地抑制散斑噪声,提高全息图的再现像质量,更适用于复杂形貌三维物体的计算.
    Computer-generated hologram (CGH) makes possible the three-dimensional (3D) display of true stereo. It has characteristics of strong flexibility, small noise, easy replication, and computable virtual object. However, there are still some difficulties with the CGH 3D display presently, such as slow computation speed of complex object hologram, small size and small field angle of 3D scene, much noise of reconstruction image, and true color display. In this paper, the problem of reconstruction image noise and true color display of the CGH are studied, and the hologram of true color 3D object with complex morphologies is calculated. First of all, the angular-spectrum layer-oriented method can avoid error caused by the paraxial approximation and be used to accurately generate and calculate 3D object hologram. And it also has advantages of efficient computation, reduced complexity, and less storage memory. We achieve the true color display of a 3D object by using the angular-spectrum method based on intensity and depth maps. We also analyze the problem of multi-wavelength sampling, and mitigate the phenomenon of frequency mixing effectively. Then, we propose to use the Gerchberg-Saxton (GS) algorithm along with the angular-spectrum layer oriented method to reduce the speckle noise in the reconstruction image. The root mean-square error (RMSE) and peak signal-to-noise ratio (PSNR) of the reconstruction image by angular-spectrum layer-oriented method with the GS algorithm are compared with those obtained in the case without using the GS algorithm. The RMSE and PSNR are the main methods of evaluating the image quality. Smaller RMSE and bigger PSNR correspond to higher quality of the image. The hologram and reconstruction image of the true color locomotive with complex morphologies are calculated using the method proposed in this paper and the locomotive is divided into three parts:head, middle and tail. The RMSE and the PSNR of reconstruction image of the head are approximately 0.77 and 65.7, respectively. The RMSE and the PSNR of reconstruction image of the middle are approximately 0.68 and 70.0, respectively, and so are those of the tail. Comparing with the traditional angular-spectrum layer-oriented method, the RMSE of the reconstruction images of the head, middle and tail are reduced approximately by 0.11, 0.40, 0.41, and the PSNR are increased approximately by 1.15, 5.70, 4.13, respectively. The simulation results show that the speckle noise is suppressed effectively and the quality of the reconstruction image is improved when the GS algorithm along with the angular-spectrum layer oriented method is used. The proposed method is more suitable for the calculation of complex 3D objects with true color.
      通信作者: 张亚萍, yapingzhang11@qq.com
    • 基金项目: 国家自然科学基金(批准号:61007061,61565010,11762009)资助的课题.
      Corresponding author: Zhang Ya-Ping, yapingzhang11@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61007061, 61565010, 11762009).
    [1]

    Goodman J W, Lwrence R W 1967 Appl. Phys. Lett. 11 77

    [2]

    Adam K, David L K 1965 Appl. Opt. 4 387

    [3]

    Qian X F 2015 Information Optical Digital Laboratory (Beijing: Science Press) p200 (in Chinese) [钱晓凡 2015 信息光学数字实验室 (北京: 科学出版社) 第200页]

    [4]

    Gabor D 1948 Nature 161 777

    [5]

    Leith E N, Upatnieks J 1963 J. Opt. Soc. Am. 53 1377

    [6]

    Tan F 2012 Opt. Instrum. 34 16 (in Chinese) [覃芳 2012 光学仪器34 16]

    [7]

    Waters J P 1966 Appl. Phys. Lett. 9 405

    [8]

    Matsushima K, Nakahara S 2009 Appl. Opt. 48 H54

    [9]

    Pan Y J, Wang Y T, Liu J, Li X, Jia J 2014 Appl. Opt. 53 1354

    [10]

    Sun P, Xie J H, Zhou Y L 2004 Acta Opt. Sin. 24 110 (in Chinese) [孙萍, 谢敬辉, 周元林 2004 光学学报 24 110]

    [11]

    Li J C 2014 Diffraction Calculations and Digital Holography (Vol. 1) (Beijing: Science Press) p261 (in Chinese) [李俊昌 2014 衍射计算及数字全息(上册) (北京: 科学出版社)第261页]

    [12]

    Poon T C, Liu J P 2014 Introduction to Modern Digital Holography with MATLAB (London: Cambridge University Press) p5

    [13]

    Michal M, Maciei S, Andrzei K, Grzegorz M 2005 Opt. Eng. 44 125805

    [14]

    Cao X M, Sang X Z, Chen Z D, Leng J M, Zhang M, Guo N, Yu C X, Xu D X 2014 Chin. J. Lasers 41 0609002 (in Chinese) [曹雪梅, 桑新柱, 陈志东, 冷俊敏, 张明, 郭南, 余重秀, 徐大雄 2014中国激光41 0609002]

    [15]

    Chang C L, Xia J, Yang L, Lei W, Yang Z M, Chen J H 2015 Appl. Opt. 54 6994

    [16]

    Pang H, Wang J Z, Cao A X, Zhang M, Shi L F, Deng Q L 2017 IEEE Photon. J. 9 1

    [17]

    Zhao Y, Cao L C, Zhang H, Kong D Z, Jin G F 2015 Opt. Express 23 25440

    [18]

    Gerchberg R W, Saxton W O 1972 Optik 35 237

    [19]

    Xie J H, Liao N F, Cao L C 2007 Fundamentals of Fourier Optics and Contemporary Optics (Beijing: Beijing Polytechnic University Press) p79 (in Chinese) [谢景辉, 廖宁放, 曹良才 2007 傅里叶光学与现代光学基础(北京:北京理工大学出版社)第79页]

    [20]

    Shen C, Wei S, Liu K F, Zhang F, Li H, Wang Y 2014 Laser Optoelectr. Prog. 51 030005} (in Chinese) [沈川, 韦穗, 刘凯峰, 张芬, 李浩, 王岳 2014 激光与光电子学进展 51 030005]

    [21]

    Piao Y L, Kwon K C, Jeong J S, Kim N 2016 3D Image Acquisition and Display: Technology, Perception and Applications Heidelberg, Germany, July 25-28, 2016 JW4A. 29

    [22]

    Peng J M, Du S J, Jiang P Z 2013 High Power Laser and Particle Beams 25 315 (in Chinese) [彭金锰, 杜少军, 蒋鹏志 2013 强激光与粒子束 25 315]

    [23]

    Gu X, Xu K S 2000 J. Fudan Univ. (Natural Science) 39 205 (in Chinese) [顾翔, 徐克璹 2000 复旦学报(自然科学版) 39 205]

    [24]

    Wang J Y, Cao J H 2015 J. Tianjin Univ. Technol. Education 25 36 (in Chinese) [王金洋, 曹继华2015天津职业技术师范大学学报 25 36]

    [25]

    Li F, Bi Y, Wang H, Sun M Y, Kong X X 2012 Chin. J. Lasers 39 1009001

    [26]

    Zhou P H, Bi Y, Sun M Y, Wang H, Li F, Qi Y 2014 Appl. Opt. 53 G209

    [27]

    Pan Y C, Xu X W, Liang X N 2013 Appl. Opt. 52 6562

    [28]

    Liu J, Ma X, Wang Y T, Jia J, Zhang Y X 2015 CN104281490A (in Chinese) [刘娟, 马晓, 王涌天, 贾甲, 张迎曦 2015 CN104281490A]

    [29]

    Kwon M W, Kim S C, Yoon S E, Kim E S 2015 Opt. Express 23 2101

    [30]

    Chen H R, Fu S H, Wang Y Q 2014 Opto-Electron. Eng. 41 48 (in Chinese) [陈慧荣, 付胜豪, 王元庆2014光电工程41 48]

    [31]

    Fu S H, Wang Y Q, Bao X L, Fan K F 2013 Electron. Opt. Control 20 61 (in Chinese) [付胜豪, 王元庆, 鲍绪良, 范科峰 2013 电光与控制 20 61]

  • [1]

    Goodman J W, Lwrence R W 1967 Appl. Phys. Lett. 11 77

    [2]

    Adam K, David L K 1965 Appl. Opt. 4 387

    [3]

    Qian X F 2015 Information Optical Digital Laboratory (Beijing: Science Press) p200 (in Chinese) [钱晓凡 2015 信息光学数字实验室 (北京: 科学出版社) 第200页]

    [4]

    Gabor D 1948 Nature 161 777

    [5]

    Leith E N, Upatnieks J 1963 J. Opt. Soc. Am. 53 1377

    [6]

    Tan F 2012 Opt. Instrum. 34 16 (in Chinese) [覃芳 2012 光学仪器34 16]

    [7]

    Waters J P 1966 Appl. Phys. Lett. 9 405

    [8]

    Matsushima K, Nakahara S 2009 Appl. Opt. 48 H54

    [9]

    Pan Y J, Wang Y T, Liu J, Li X, Jia J 2014 Appl. Opt. 53 1354

    [10]

    Sun P, Xie J H, Zhou Y L 2004 Acta Opt. Sin. 24 110 (in Chinese) [孙萍, 谢敬辉, 周元林 2004 光学学报 24 110]

    [11]

    Li J C 2014 Diffraction Calculations and Digital Holography (Vol. 1) (Beijing: Science Press) p261 (in Chinese) [李俊昌 2014 衍射计算及数字全息(上册) (北京: 科学出版社)第261页]

    [12]

    Poon T C, Liu J P 2014 Introduction to Modern Digital Holography with MATLAB (London: Cambridge University Press) p5

    [13]

    Michal M, Maciei S, Andrzei K, Grzegorz M 2005 Opt. Eng. 44 125805

    [14]

    Cao X M, Sang X Z, Chen Z D, Leng J M, Zhang M, Guo N, Yu C X, Xu D X 2014 Chin. J. Lasers 41 0609002 (in Chinese) [曹雪梅, 桑新柱, 陈志东, 冷俊敏, 张明, 郭南, 余重秀, 徐大雄 2014中国激光41 0609002]

    [15]

    Chang C L, Xia J, Yang L, Lei W, Yang Z M, Chen J H 2015 Appl. Opt. 54 6994

    [16]

    Pang H, Wang J Z, Cao A X, Zhang M, Shi L F, Deng Q L 2017 IEEE Photon. J. 9 1

    [17]

    Zhao Y, Cao L C, Zhang H, Kong D Z, Jin G F 2015 Opt. Express 23 25440

    [18]

    Gerchberg R W, Saxton W O 1972 Optik 35 237

    [19]

    Xie J H, Liao N F, Cao L C 2007 Fundamentals of Fourier Optics and Contemporary Optics (Beijing: Beijing Polytechnic University Press) p79 (in Chinese) [谢景辉, 廖宁放, 曹良才 2007 傅里叶光学与现代光学基础(北京:北京理工大学出版社)第79页]

    [20]

    Shen C, Wei S, Liu K F, Zhang F, Li H, Wang Y 2014 Laser Optoelectr. Prog. 51 030005} (in Chinese) [沈川, 韦穗, 刘凯峰, 张芬, 李浩, 王岳 2014 激光与光电子学进展 51 030005]

    [21]

    Piao Y L, Kwon K C, Jeong J S, Kim N 2016 3D Image Acquisition and Display: Technology, Perception and Applications Heidelberg, Germany, July 25-28, 2016 JW4A. 29

    [22]

    Peng J M, Du S J, Jiang P Z 2013 High Power Laser and Particle Beams 25 315 (in Chinese) [彭金锰, 杜少军, 蒋鹏志 2013 强激光与粒子束 25 315]

    [23]

    Gu X, Xu K S 2000 J. Fudan Univ. (Natural Science) 39 205 (in Chinese) [顾翔, 徐克璹 2000 复旦学报(自然科学版) 39 205]

    [24]

    Wang J Y, Cao J H 2015 J. Tianjin Univ. Technol. Education 25 36 (in Chinese) [王金洋, 曹继华2015天津职业技术师范大学学报 25 36]

    [25]

    Li F, Bi Y, Wang H, Sun M Y, Kong X X 2012 Chin. J. Lasers 39 1009001

    [26]

    Zhou P H, Bi Y, Sun M Y, Wang H, Li F, Qi Y 2014 Appl. Opt. 53 G209

    [27]

    Pan Y C, Xu X W, Liang X N 2013 Appl. Opt. 52 6562

    [28]

    Liu J, Ma X, Wang Y T, Jia J, Zhang Y X 2015 CN104281490A (in Chinese) [刘娟, 马晓, 王涌天, 贾甲, 张迎曦 2015 CN104281490A]

    [29]

    Kwon M W, Kim S C, Yoon S E, Kim E S 2015 Opt. Express 23 2101

    [30]

    Chen H R, Fu S H, Wang Y Q 2014 Opto-Electron. Eng. 41 48 (in Chinese) [陈慧荣, 付胜豪, 王元庆2014光电工程41 48]

    [31]

    Fu S H, Wang Y Q, Bao X L, Fan K F 2013 Electron. Opt. Control 20 61 (in Chinese) [付胜豪, 王元庆, 鲍绪良, 范科峰 2013 电光与控制 20 61]

  • [1] 张旭, 丁进敏, 侯晨阳, 赵一鸣, 刘鸿维, 梁生. 基于机器学习的激光匀光整形方法. 物理学报, 2024, 73(16): 164205. doi: 10.7498/aps.73.20240747
    [2] 刘瀚扬, 华南, 王一诺, 梁俊卿, 马鸿洋. 基于量子随机行走和多维混沌的三维图像加密算法. 物理学报, 2022, 71(17): 170303. doi: 10.7498/aps.71.20220466
    [3] 王创业, 宁提纲, 李晶, 裴丽, 郑晶晶, 李雨键, 艾渤. 基于双偏振调制的可变对称三角波形的生成. 物理学报, 2021, 70(22): 224211. doi: 10.7498/aps.70.20210751
    [4] 徐启伟, 王佩佩, 曾镇佳, 黄泽斌, 周新星, 刘俊敏, 李瑛, 陈书青, 范滇元. 基于深度卷积神经网络的大气湍流相位提取. 物理学报, 2020, 69(1): 014209. doi: 10.7498/aps.69.20190982
    [5] 刘畅, 刘祥瑞. 强三维拓扑绝缘体与磁性拓扑绝缘体的角分辨光电子能谱学研究进展. 物理学报, 2019, 68(22): 227901. doi: 10.7498/aps.68.20191450
    [6] 王玥, 梁言生, 严绍辉, 曹志良, 蔡亚楠, 张艳, 姚保利, 雷铭. 轴向多光阱微粒捕获与实时直接观测技术. 物理学报, 2018, 67(13): 138701. doi: 10.7498/aps.67.20180460
    [7] 王浩森, 杨守文, 白彦, 陈涛, 汪宏年. 非均质各向异性地层中方位随钻电磁测井响应三维有限体积法数值模拟算法. 物理学报, 2016, 65(7): 079101. doi: 10.7498/aps.65.079101
    [8] 陈桂波, 毕娟, 张烨, 李宗文. 各向异性介质三维电磁响应模拟的Ho-GEBA算法. 物理学报, 2013, 62(9): 094101. doi: 10.7498/aps.62.094101
    [9] 李清都, 唐宋. 三维超混沌映射拓扑马蹄寻找算法及应用. 物理学报, 2013, 62(2): 020510. doi: 10.7498/aps.62.020510
    [10] 张忠宇, 姚熊亮, 张阿漫. 小攻角下三维细长体定常空化形态研究. 物理学报, 2013, 62(20): 204701. doi: 10.7498/aps.62.204701
    [11] 杨超, 刘大刚, 王小敏, 刘腊群, 王学琼, 刘盛纲. 基于负氢离子源的全三维PIC/MCC模拟算法研究. 物理学报, 2012, 61(4): 045204. doi: 10.7498/aps.61.045204
    [12] 张宝龙, 李丹, 戴凤智, 杨世凤, 郭海成. 彩色滤光膜硅覆液晶微显示器的三维光学建模. 物理学报, 2012, 61(4): 040701. doi: 10.7498/aps.61.040701
    [13] 史祎诗, 王雅丽, 肖俊, 杨玉花, 张静娟. 基于位相抽取的三维信息加密算法研究. 物理学报, 2011, 60(3): 034202. doi: 10.7498/aps.60.034202
    [14] 冯友君, 林中校, 张蓉竹. 连续位相板均方根梯度对焦斑匀滑特性的影响. 物理学报, 2011, 60(10): 104202. doi: 10.7498/aps.60.104202
    [15] 赵啦啦, 刘初升, 闫俊霞, 徐志鹏. 颗粒分层过程三维离散元法模拟研究. 物理学报, 2010, 59(3): 1870-1876. doi: 10.7498/aps.59.1870
    [16] 叶红霞, 金亚秋. 三维随机粗糙面上导体目标散射的解析-数值混合算法. 物理学报, 2008, 57(2): 839-846. doi: 10.7498/aps.57.839
    [17] 汪 敏, 胡小方, 伍小平. 物体内部三维位移场分析的数字图像相关方法. 物理学报, 2006, 55(10): 5135-5139. doi: 10.7498/aps.55.5135
    [18] 禹思敏. 用三角波序列产生三维多涡卷混沌吸引子的电路实验. 物理学报, 2005, 54(4): 1500-1509. doi: 10.7498/aps.54.1500
    [19] 申金媛, 李现国, 常胜江, 张延炘. 相位特征在三维物体识别中的应用. 物理学报, 2005, 54(11): 5157-5163. doi: 10.7498/aps.54.5157
    [20] 常明, 许守廉. Voigt函数法的误差分析. 物理学报, 1993, 42(3): 446-452. doi: 10.7498/aps.42.446
计量
  • 文章访问数:  8002
  • PDF下载量:  305
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-16
  • 修回日期:  2018-01-15
  • 刊出日期:  2018-05-05

/

返回文章
返回