搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高精细度光腔锁频激光的分子吸收光谱测量

康鹏 孙羽 王进 刘安雯 胡水明

引用本文:
Citation:

基于高精细度光腔锁频激光的分子吸收光谱测量

康鹏, 孙羽, 王进, 刘安雯, 胡水明

Measurement of molecular absorption spectrum with a laser locked on a high-finesse cavity

Kang Peng, Sun Yu, Wang Jin, Liu An-Wen, Hu Shui-Ming
PDF
导出引用
  • 利用高精细度光腔锁定激光频率,实现了对分子吸收光谱的高精度测量.光腔采用低热膨胀系数的殷钢结构设计和温度控制,实现了腔长度的稳定;通过将激光频率锁定在光腔纵模上,实现了高频率精度和高灵敏度的光腔衰荡光谱测量.利用该装置示范性地测量了二氧化碳分子在6470.42 cm-1附近的光腔衰荡光谱和色散光谱,得到了高精度的谱线参数,并和数据库谱线参数进行了对比.
    High-resolution and high-sensitivity molecular spectroscopy is widely used in fundamental molecular physics, atmospheric studies, remote sensing, industrial process monitoring, and medical diagnostics. Accurate determination of the parameters of molecule absorption lines, such as line positions, line strengths, line widths and profiles, is essential to support these studies and applications. For example, in order to retrieve the column density of carbon dioxide with a precision of one part per million (ppm), we need laboratory data of line positions with a uncertainty lower than 0.3 MHz and line intensities with a relative accuracy better than 0.5%. Here we present precision spectroscopy of molecules using a laser locked with a high-finesse cavity. The cavity made of invar is thermo-stabilized to reduce the drifts of its length and the cavity mode frequencies. The frequency of the probe laser is locked on a longitudinal mode of the cavity by using the Pound-Drever-Hall method. Another beam from the probe laser, which is frequency shifted and on resonance with a nearby longitudinal mode of the cavity, is used for cavity ring-down spectrum (CRDS) measurement. The CRDS absorption spectrum is recorded by stepping the modulation frequency of a fiber electro-optic modulator in increment of the mode spacing of the cavity. Note that the cavity mode frequencies are shifted due to the dispersion introduced by the absorption lines. Prior to the CRDS measurements, the transmittance spectra of the cavity modes are recorded by scanning the probe laser frequencies over the resonance, which allows the determination of the cavity mode frequencies with an accuracy at a Hz level. Therefore, a dispersion spectrum is also obtained using the same setup by measuring the frequency shifts of cavity modes of the samples with and without absorption. The absolute frequency of the probe laser is determined by an optical frequency comb referring to a GPS-disciplined rubidium clock. The long term drift of beat frequency between the optical frequency comb and the probe laser is measured to be about 1.8 MHz per hour, which is consistent with the thermal expansion of the cavity under a temperature drift of 50 mK. The performance of the spectrometer is demonstrated by measuring the Doppler-broadened spectra of CO2 around 6470.42 cm-1. Precise spectroscopic parameters are derived from both the absorption and dispersion spectra recorded by the same spectrometer. The line position is determined with an accuracy of 0.18 MHz, which is over one order of magnitude better than those given in previous studies and spectral databases.
      通信作者: 胡水明, smhu@ustc.edu.cn
    • 基金项目: 国家自然科学基金(批准号:21688102,21427804)资助的课题.
      Corresponding author: Hu Shui-Ming, smhu@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21688102, 21427804).
    [1]

    Daussy C, Guinet M, Amy-Klein A, Djerroud K, Hermier Y, Briaudeau S, Borde Ch J, Chardonnet C 2007 Phys. Rev. Lett. 98 250801

    [2]

    Moretti L, Castrillo A, Fasci E, de Vizia M D, Casa G, Galzerano G, Merlone A, Laporta P, Gianfrani L 2013 Phys. Rev. Lett. 111 060803

    [3]

    Cheng C F, Wang J, Sun Y R, Tan Y, Kang P, Hu S M 2015 Metrologia 52 S385

    [4]

    Morville J, Chenevier M, Kachanov A A, Romanini D 2002 Proc. SPIE 4485 236

    [5]

    Dudek J B, Tarsa P B, Velasquez A, Wladyslawski M, Rabinowitz P, Lehmann K K 2003 Anal. Chem. 75 4599

    [6]

    Crosson E R 2008 Appl. Phys. B 92 403

    [7]

    Chen B, Kang P, Li J Y, He X L, Liu A W, Hu S M 2015 Chin. J. Chem. Phys. 28 6

    [8]

    Rothman L S, Gordon I E, Babikov Y, Barbe A, Benner D C, Bernath P F, Birk M, Bizzocchi L, Boudon V, Brown L R, Campargue A, Chance K, Cohen E A, Coudert L H, Devi V M, Drouin B J, Fayt A, Flaud J M, Gamache R R, Harrison J J, Hartmann J M, Hill C, Hodges J T, Jacquemart D, Jolly A, Lamouroux J, Le Roy R J, Li G, Long D A, Lyulin O M, Mackie C J, Massie S T, Mikhailenko S, Muller H S P, Naumenko O V, Nikitin A V, Orphal J, Perevalov V, Perrin A, Polovtseva E R, Richard C, Smith M A H, Starikova E, Sung K, Tashkun S, Tennyson J, Toon G C, Tyuterev V G, Wagner G 2013 J. Quant. Spectrosc. Radiat. Transf. 130 4

    [9]

    Jiang J, Bernard J E, Madej A A, Czajkowski A, Drissler S, Jones D J 2007 J. Opt. Soc. Am. B 24 2727

    [10]

    Madej A A, Alcock A J, Czajkowski A, Bernard J E, Chepurov S 2006 J. Opt. Soc. Am. B 23 2200

    [11]

    Okubo S, Nakayama H, Iwakuni K, Inaba H, Sasada H 2011 Opt. Express 19 23878

    [12]

    Robichaud D J, Hodges J T, Maslowski P, Yeung L Y, Okumura M, Miller C E, Brown L R 2008 J. Mol. Spectrosc. 251 27

    [13]

    Swann W C, Gilbert S L 2002 J. Opt. Soc. Am. B 19 2461

    [14]

    Takahata K, Kobayashi T, Sasada H, Nakajima Y, Inaba H, Hong F L 2009 Phys. Rev. A 80 032518

    [15]

    Titov D V, Svedhem H, Mccoy D, Lebreton J P, Barabash S, Bertaux J L, Drossart P, Formisano V, Haeusler B, Korablev O I, Markiewicz W, Neveance D, Petzold M, Piccioni G, Zhang T L, Taylor F W, Lellouch E, Koschny D, Witasse O, Warhaut M, Acomazzo A, Rodrigues-Cannabal J, Fabrega J, Schirmann T, Clochet A, Coradini M 2006 Cosmic. Res. 44 334

    [16]

    Ammannito E, Filacchione G, Coradini A, Capaccioni F, Piccioni G, de Sanctis M C, Dami M, Barbis A 2006 Rev. Sci. Instrum. 77 093109

    [17]

    Graf J E, Zurek R W, Erickson J K, Jai B, Johnston M D, de Paula R 2007 Acta Astronaut. 61 44

    [18]

    Krasnopolsky V A 2006 Icarus 185 153

    [19]

    Bailey J, Simpson A, Crisp D 2007 Publ. Astron. Soc. Pac. 119 228

    [20]

    Butz A, Guerlet S, Hasekamp O, Schepers D, Galli A, Aben I, Frankenberg C, Hartmann J M, Tran H, Kuze A, Keppel-Aleks G, Toon G, Wunch D, Wennberg P, Deutscher N, Griffith D, Macatangay R, Messerschmidt J, Notholt J, Warneke T 2011 Geophys. Res. Lett. 38 L14812

    [21]

    Crisp D, Atlas R M, Breon F M, Brown L R, Burrows J P, Ciais P, Connor B J, Doney S C, Fung I Y, Jacob D J, Miller C E, O'Brien D, Pawson S, Randerson J T, Rayner P, Salawitch R J, Sander S P, Sen B, Stephens G L, Tans P P, Toon G C, Wennberg P O, Wofsy S C, Yung Y L, Kuang Z, Chudasama B, Sprague G, Weiss B, Pollock R, Kenyon D, Schroll S 2004 Adv. Space. Res. Ser. 34 700

    [22]

    Zhang H, Lin C, Zheng Y Q, Wang W Q, Tian L F, Liu D B, Li S 2016 J. Appl. Remote. Sens. 10 024003

    [23]

    Miller C E, Brown L R, Toth R A, Benner D C, Devi V M 2005 C. R. Phys. 6 876

    [24]

    Miller C E, Crisp D, de Cola P L, Olsen S C, Randerson J T, Michalak A M, Alkhaled A, Rayner P, Jacob D J, Suntharalingam P, Jones D B A, Denning A S, Nicholls M E, Doney S C, Pawson S, Boesch H, Connor B J, Fung I Y, O'Brien D, Salawitch R J, Sander S P, Sen B, Tans P, Toon G C, Wennberg P O, Wofsy S C, Yung Y L, Law R M 2007 J. Geophys. Res. Atmos. 112 D10314

    [25]

    Boudjaadar D, Mandin J Y, Dana V, Picque N, Guelachvili G 2006 J. Mol. Spectrosc. 236 158

    [26]

    Jacquemart D, Borkov Y G, Lyulin O M, Tashkun S A, Perevalov V I 2015 J. Quant. Spectrosc. Radiat. Transf. 160 1

    [27]

    Karlovets E V, Campargue A, Mondelain D, Beguier S, Kassi S, Tashkun S A, Perevalov V I 2013 J. Quant. Spectrosc. Radiat. Transf. 130 116

    [28]

    O'keefe A, Deacon D A G 1988 Rev. Sci. Instrum. 59 2544

    [29]

    Gagliardi G, Loock H P 2014 Cavity Enhanced Spectroscopy and Sensing (Berlin:Springer) pp1-60

    [30]

    Pan H, Cheng C F, Sun Y R, Gao B, Liu A W, Hu S M 2011 Rev. Sci. Instrum. 82 103110

    [31]

    Gatti D, Sala T, Gotti R, Cocola L, Poletto L, Prevedelli M, Laporta P, Marangoni M 2015 J. Chem. Phys. 142 074201

    [32]

    Martinez R Z, Metsala M, Vaittinen O, Lantta T, Halonen L 2006 J. Opt. Soc. Am. B 23 727

    [33]

    Hodges J T, Layer H P, Miller W W, Scace G E 2004 Rev. Sci. Instrum. 75 849

    [34]

    Cygan A, Lisak D, Maslowski P, Bielska K, Wojtewicz S, Domyslawska J, Trawinski R S, Ciurylo R, Abe H, Hodges J T 2011 Rev. Sci. Instrum. 82 063107

    [35]

    Wang J, Sun Y R, Tao L G, Liu A W, Hua T P, Meng F, Hu S M 2017 Rev. Sci. Instrum. 88 043108

    [36]

    Wang J, Sun Y R, Tao L G, Liu A W, Hu S M 2017 J. Chem. Phys. 147 091103

    [37]

    Chen B, Sun Y R, Zhou Z Y, Chen J, Liu A W, Hu S M 2014 Appl. Opt. 53 7716

    [38]

    Cygan A, Lisak D, Morzynski P, Bober M, Zawada M, Pazderski E, Ciurylo R 2013 Opt. Express 21 29744

    [39]

    Cygan A, Wcislo P, Wojtewicz S, Maslowski P, Hodges J T, Ciurylo R, Lisak D 2015 Opt. Express 23 14472

    [40]

    Cygan A, Wojtewicz S, Zaborowski M, Wcislo P, Guo R M, Ciurylo R, Lisak D 2016 Meas. Sci. Technol. 27 045501

    [41]

    Ma W G, Foltynowicz A, Axner O 2008 J. Opt. Soc. Am. B 25 1144

    [42]

    Toth R A, Brown L R, Miller C E, Devi V M, Benner D C 2006 J. Mol. Spectrosc. 239 243

    [43]

    ftp://ftp.iao.ru/pub/CDSD-296/[2017-11-27]

    [44]

    Perevalov B V, Kassi S, Perevalov V I, Tashkun S A, Campargue A 2008 J. Mol. Spectrosc. 252 143

  • [1]

    Daussy C, Guinet M, Amy-Klein A, Djerroud K, Hermier Y, Briaudeau S, Borde Ch J, Chardonnet C 2007 Phys. Rev. Lett. 98 250801

    [2]

    Moretti L, Castrillo A, Fasci E, de Vizia M D, Casa G, Galzerano G, Merlone A, Laporta P, Gianfrani L 2013 Phys. Rev. Lett. 111 060803

    [3]

    Cheng C F, Wang J, Sun Y R, Tan Y, Kang P, Hu S M 2015 Metrologia 52 S385

    [4]

    Morville J, Chenevier M, Kachanov A A, Romanini D 2002 Proc. SPIE 4485 236

    [5]

    Dudek J B, Tarsa P B, Velasquez A, Wladyslawski M, Rabinowitz P, Lehmann K K 2003 Anal. Chem. 75 4599

    [6]

    Crosson E R 2008 Appl. Phys. B 92 403

    [7]

    Chen B, Kang P, Li J Y, He X L, Liu A W, Hu S M 2015 Chin. J. Chem. Phys. 28 6

    [8]

    Rothman L S, Gordon I E, Babikov Y, Barbe A, Benner D C, Bernath P F, Birk M, Bizzocchi L, Boudon V, Brown L R, Campargue A, Chance K, Cohen E A, Coudert L H, Devi V M, Drouin B J, Fayt A, Flaud J M, Gamache R R, Harrison J J, Hartmann J M, Hill C, Hodges J T, Jacquemart D, Jolly A, Lamouroux J, Le Roy R J, Li G, Long D A, Lyulin O M, Mackie C J, Massie S T, Mikhailenko S, Muller H S P, Naumenko O V, Nikitin A V, Orphal J, Perevalov V, Perrin A, Polovtseva E R, Richard C, Smith M A H, Starikova E, Sung K, Tashkun S, Tennyson J, Toon G C, Tyuterev V G, Wagner G 2013 J. Quant. Spectrosc. Radiat. Transf. 130 4

    [9]

    Jiang J, Bernard J E, Madej A A, Czajkowski A, Drissler S, Jones D J 2007 J. Opt. Soc. Am. B 24 2727

    [10]

    Madej A A, Alcock A J, Czajkowski A, Bernard J E, Chepurov S 2006 J. Opt. Soc. Am. B 23 2200

    [11]

    Okubo S, Nakayama H, Iwakuni K, Inaba H, Sasada H 2011 Opt. Express 19 23878

    [12]

    Robichaud D J, Hodges J T, Maslowski P, Yeung L Y, Okumura M, Miller C E, Brown L R 2008 J. Mol. Spectrosc. 251 27

    [13]

    Swann W C, Gilbert S L 2002 J. Opt. Soc. Am. B 19 2461

    [14]

    Takahata K, Kobayashi T, Sasada H, Nakajima Y, Inaba H, Hong F L 2009 Phys. Rev. A 80 032518

    [15]

    Titov D V, Svedhem H, Mccoy D, Lebreton J P, Barabash S, Bertaux J L, Drossart P, Formisano V, Haeusler B, Korablev O I, Markiewicz W, Neveance D, Petzold M, Piccioni G, Zhang T L, Taylor F W, Lellouch E, Koschny D, Witasse O, Warhaut M, Acomazzo A, Rodrigues-Cannabal J, Fabrega J, Schirmann T, Clochet A, Coradini M 2006 Cosmic. Res. 44 334

    [16]

    Ammannito E, Filacchione G, Coradini A, Capaccioni F, Piccioni G, de Sanctis M C, Dami M, Barbis A 2006 Rev. Sci. Instrum. 77 093109

    [17]

    Graf J E, Zurek R W, Erickson J K, Jai B, Johnston M D, de Paula R 2007 Acta Astronaut. 61 44

    [18]

    Krasnopolsky V A 2006 Icarus 185 153

    [19]

    Bailey J, Simpson A, Crisp D 2007 Publ. Astron. Soc. Pac. 119 228

    [20]

    Butz A, Guerlet S, Hasekamp O, Schepers D, Galli A, Aben I, Frankenberg C, Hartmann J M, Tran H, Kuze A, Keppel-Aleks G, Toon G, Wunch D, Wennberg P, Deutscher N, Griffith D, Macatangay R, Messerschmidt J, Notholt J, Warneke T 2011 Geophys. Res. Lett. 38 L14812

    [21]

    Crisp D, Atlas R M, Breon F M, Brown L R, Burrows J P, Ciais P, Connor B J, Doney S C, Fung I Y, Jacob D J, Miller C E, O'Brien D, Pawson S, Randerson J T, Rayner P, Salawitch R J, Sander S P, Sen B, Stephens G L, Tans P P, Toon G C, Wennberg P O, Wofsy S C, Yung Y L, Kuang Z, Chudasama B, Sprague G, Weiss B, Pollock R, Kenyon D, Schroll S 2004 Adv. Space. Res. Ser. 34 700

    [22]

    Zhang H, Lin C, Zheng Y Q, Wang W Q, Tian L F, Liu D B, Li S 2016 J. Appl. Remote. Sens. 10 024003

    [23]

    Miller C E, Brown L R, Toth R A, Benner D C, Devi V M 2005 C. R. Phys. 6 876

    [24]

    Miller C E, Crisp D, de Cola P L, Olsen S C, Randerson J T, Michalak A M, Alkhaled A, Rayner P, Jacob D J, Suntharalingam P, Jones D B A, Denning A S, Nicholls M E, Doney S C, Pawson S, Boesch H, Connor B J, Fung I Y, O'Brien D, Salawitch R J, Sander S P, Sen B, Tans P, Toon G C, Wennberg P O, Wofsy S C, Yung Y L, Law R M 2007 J. Geophys. Res. Atmos. 112 D10314

    [25]

    Boudjaadar D, Mandin J Y, Dana V, Picque N, Guelachvili G 2006 J. Mol. Spectrosc. 236 158

    [26]

    Jacquemart D, Borkov Y G, Lyulin O M, Tashkun S A, Perevalov V I 2015 J. Quant. Spectrosc. Radiat. Transf. 160 1

    [27]

    Karlovets E V, Campargue A, Mondelain D, Beguier S, Kassi S, Tashkun S A, Perevalov V I 2013 J. Quant. Spectrosc. Radiat. Transf. 130 116

    [28]

    O'keefe A, Deacon D A G 1988 Rev. Sci. Instrum. 59 2544

    [29]

    Gagliardi G, Loock H P 2014 Cavity Enhanced Spectroscopy and Sensing (Berlin:Springer) pp1-60

    [30]

    Pan H, Cheng C F, Sun Y R, Gao B, Liu A W, Hu S M 2011 Rev. Sci. Instrum. 82 103110

    [31]

    Gatti D, Sala T, Gotti R, Cocola L, Poletto L, Prevedelli M, Laporta P, Marangoni M 2015 J. Chem. Phys. 142 074201

    [32]

    Martinez R Z, Metsala M, Vaittinen O, Lantta T, Halonen L 2006 J. Opt. Soc. Am. B 23 727

    [33]

    Hodges J T, Layer H P, Miller W W, Scace G E 2004 Rev. Sci. Instrum. 75 849

    [34]

    Cygan A, Lisak D, Maslowski P, Bielska K, Wojtewicz S, Domyslawska J, Trawinski R S, Ciurylo R, Abe H, Hodges J T 2011 Rev. Sci. Instrum. 82 063107

    [35]

    Wang J, Sun Y R, Tao L G, Liu A W, Hua T P, Meng F, Hu S M 2017 Rev. Sci. Instrum. 88 043108

    [36]

    Wang J, Sun Y R, Tao L G, Liu A W, Hu S M 2017 J. Chem. Phys. 147 091103

    [37]

    Chen B, Sun Y R, Zhou Z Y, Chen J, Liu A W, Hu S M 2014 Appl. Opt. 53 7716

    [38]

    Cygan A, Lisak D, Morzynski P, Bober M, Zawada M, Pazderski E, Ciurylo R 2013 Opt. Express 21 29744

    [39]

    Cygan A, Wcislo P, Wojtewicz S, Maslowski P, Hodges J T, Ciurylo R, Lisak D 2015 Opt. Express 23 14472

    [40]

    Cygan A, Wojtewicz S, Zaborowski M, Wcislo P, Guo R M, Ciurylo R, Lisak D 2016 Meas. Sci. Technol. 27 045501

    [41]

    Ma W G, Foltynowicz A, Axner O 2008 J. Opt. Soc. Am. B 25 1144

    [42]

    Toth R A, Brown L R, Miller C E, Devi V M, Benner D C 2006 J. Mol. Spectrosc. 239 243

    [43]

    ftp://ftp.iao.ru/pub/CDSD-296/[2017-11-27]

    [44]

    Perevalov B V, Kassi S, Perevalov V I, Tashkun S A, Campargue A 2008 J. Mol. Spectrosc. 252 143

  • [1] 袁洪瑞, 刘涛, 朱天鑫, 刘云, 李响, 陈杨, 段传喜. SF6分子的10.6 μm高分辨射流冷却激光吸收光谱. 物理学报, 2023, 72(6): 063301. doi: 10.7498/aps.72.20222285
    [2] 熊枫, 彭志敏, 王振, 丁艳军, 吕俊复, 杜艳君. CO2/CO干扰下基于腔衰荡吸收光谱的痕量H2S浓度测量. 物理学报, 2023, 72(4): 043302. doi: 10.7498/aps.72.20221851
    [3] 王兴平, 赵刚, 焦康, 陈兵, 阚瑞峰, 刘建国, 马维光. 更正: 光学反馈线性腔衰荡光谱技术不确定性[物理学报 2022, 71(12): 124201]. 物理学报, 2022, 71(15): 159901. doi: 10.7498/aps.71.159901
    [4] 王兴平, 赵刚, 焦康, 陈兵, 阚瑞峰, 刘建国, 马维光. 光学反馈线性腔衰荡光谱技术不确定性. 物理学报, 2022, 71(12): 124201. doi: 10.7498/aps.70.20220186
    [5] 王兴平, 赵刚, 焦康, 陈兵, 阚瑞峰, 刘建国, 马维光. 光学反馈线性腔衰荡光谱技术不确定性研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220186
    [6] 饶冰洁, 张攀, 李铭坤, 杨西光, 闫露露, 陈鑫, 张首刚, 张颜艳, 姜海峰. 用于光腔衰荡光谱测量的多支路掺铒光纤飞秒光梳系统. 物理学报, 2022, 71(8): 084203. doi: 10.7498/aps.71.20212162
    [7] 王金舵, 余锦, 貊泽强, 何建国, 代守军, 孟晶晶, 王晓东, 刘洋. 连续波腔衰荡光谱技术中模式筛选的数值方法. 物理学报, 2019, 68(24): 244201. doi: 10.7498/aps.68.20190844
    [8] 王振, 杜艳君, 丁艳军, 彭志敏. 基于傅里叶变换的波长扫描腔衰荡光谱. 物理学报, 2019, 68(20): 204204. doi: 10.7498/aps.68.20191062
    [9] 丁武文, 孙利群. 相敏式激光啁啾色散光谱技术在高吸收度情况下的应用. 物理学报, 2017, 66(12): 120601. doi: 10.7498/aps.66.120601
    [10] 贾梦源, 赵刚, 侯佳佳, 谭巍, 邱晓东, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂. 双重频率锁定的腔衰荡吸收光谱技术及信号处理. 物理学报, 2016, 65(12): 128701. doi: 10.7498/aps.65.128701
    [11] 胡仁志, 王丹, 谢品华, 凌六一, 秦敏, 李传新, 刘建国. 二极管激光腔衰荡光谱测量大气NO3自由基. 物理学报, 2014, 63(11): 110707. doi: 10.7498/aps.63.110707
    [12] 高峰, 刘辉, 许朋, 王叶兵, 田晓, 常宏. 用于互组跃迁谱测量的窄线宽激光系统. 物理学报, 2014, 63(14): 140704. doi: 10.7498/aps.63.140704
    [13] 邓伦华, 李传亮, 朱圆月, 何文艳, 陈扬骎. NO分子b4Σ--a4Πi(4,0)带的吸收光谱. 物理学报, 2012, 61(19): 194208. doi: 10.7498/aps.61.194208
    [14] 曹 琳, 王春梅, 陈扬骎, 杨晓华. 光外差腔衰荡光谱理论研究. 物理学报, 2006, 55(12): 6354-6359. doi: 10.7498/aps.55.6354
    [15] 掌蕴东, 孙旭涛, 何竹松. 激光感生色散光学滤波理论. 物理学报, 2005, 54(7): 3000-3004. doi: 10.7498/aps.54.3000
    [16] 赵宏太, 柳晓军, 曹俊文, 彭良友, 詹明生. Ba原子6s6p1P1←6s6s1S0跃迁的光腔衰荡光谱. 物理学报, 2001, 50(7): 1274-1278. doi: 10.7498/aps.50.1274
    [17] 胡水明, 何圣贵, 林 海, 程继新, 王湘淮, 郑晶晶, 成国胜, 朱清时. 高分辨傅里叶变换激光腔内吸收光谱方法:原理和应用. 物理学报, 2000, 49(8): 1435-1440. doi: 10.7498/aps.49.1435
    [18] 张林, 林仁明. 良腔情况吸收与色散混合型受驱动光学系统多光子过程的透射光谱. 物理学报, 1991, 40(3): 375-385. doi: 10.7498/aps.40.375
    [19] 潘少华, 汤晓, 冯宝华. 染料激光器的注入锁频. 物理学报, 1981, 30(2): 291-296. doi: 10.7498/aps.30.291
    [20] 张志三. λλ3100—2750之间的钠分子吸收光谱. 物理学报, 1950, 7(5): 76-82. doi: 10.7498/aps.7.76
计量
  • 文章访问数:  6596
  • PDF下载量:  412
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-27
  • 修回日期:  2018-03-12
  • 刊出日期:  2019-05-20

/

返回文章
返回